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CHAPTER

ONE

THE CHALLENGE

Most data science solutions and platforms on the market today begin and therefore emphasize the research workflow.
When it comes time to integrate the generated models into real-world AI applications, they have significant functionality
gaps.

These types of solutions tend to be useful only for the model development flow, and contribute very little to the pro-
duction pipeline: automated data collection and preparation, automated training and evaluation pipelines, real-time
application pipelines, data quality and model monitoring, feedback loops, etc.

To address the full ML application lifecycle, it’s common for organizations to combine many different tools which then
forces them to develop and maintain complex glue layers, introduce manual processes, and creates technology silos
that slow down developers and data scientists.

With this disjointed approach, the ML team must re-engineer the entire flow to fit production environments and method-
ologies while consuming excessive resources. Organizations need a way to streamline the process, automate as many
tasks as possible, and break the silos between data, ML, and DevOps/MLOps teams.
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CHAPTER

TWO

MLRUN - THE OPEN SOURCE MLOPS ORCHESTRATION

Instead of this siloed, complex and manual process, MLRun enables production pipeline design using a modular strat-
egy, where the different parts contribute to a continuous, automated, and far simpler path from research and development
to scalable production pipelines, without refactoring code, adding glue logic, or spending significant efforts on data
and ML engineering.

MLRun uses Serverless Function technology: write the code once, using your preferred development environment and
simple “local” semantics, and then run it as-is on different platforms and at scale. MLRun automates the build process,
execution, data movement, scaling, versioning, parameterization, outputs tracking, CI/CD integration, deployment to
production, monitoring, and more.

Those easily developed data or ML “functions” can then be published or loaded from a marketplace and used later to
form offline or real-time production pipelines with minimal engineering efforts.

Data preparation, model development, model and application delivery, and end to end monitoring are tightly connected:
they cannot be managed in silos. This is where MLRun MLOps orchestration comes in. ML, data, and DevOps/MLOps
teams collaborate using the same set of tools, practices, APIs, metadata, and version control.

MLRun simplifies & accelerates the time to production.

5
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CHAPTER

THREE

ARCHITECTURE

MLRun is composed of the following layers:

• Feature Store — collects, prepares, catalogs, and serves data features for development (offline) and real-time
(online) usage for real-time and batch data.

• ML CI/CD pipeline — automatically trains, tests, optimizes, and deploys or updates models using a snapshot of
the production data (generated by the feature store) and code from the source control (Git).

• Real-Time Serving Pipeline — Rapid deployment of scalable data and ML pipelines using real-time serverless
technology, including the API handling, data preparation/enrichment, model serving, ensembles, driving and
measuring actions, etc.

• Real-Time monitoring and retraining — monitors data, models, and production components and provides a
feedback loop for exploring production data, identifying drift, alerting on anomalies or data quality issues, trig-
gering re-training jobs, measuring business impact, etc.

While each of those layers is independent, the integration provides much greater value and simplicity. For example:

• The training jobs obtain features from the feature store and update the feature store with metadata, which will be
used in the serving or monitoring.

• The real-time pipeline enriches incoming events with features stored in the feature store, and can also use feature
metadata (policies, statistics, schema, etc.) to impute missing data or validate data quality.

• The monitoring layer collects real-time inputs and outputs from the real-time pipeline and compares them with
the features data/metadata from the feature store or model metadata generated by the training layer. It writes all

7
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the fresh production data back to the feature store so it can be used for various tasks such as data analysis, model
re-training (on fresh data), model improvements.

When one of the components detailed above is updated, it immediately impacts the feature generation, the model
serving pipeline, and the monitoring. MLRun applies versioning to each component, as well as versioning and rolling
upgrades across components.

8 Chapter 3. Architecture



CHAPTER

FOUR

BASIC COMPONENTS

MLRun has the following main components that are used throughout the system:

• Project — a container for organizing all of your work on a particular activity. Projects consist of metadata,
source code, workflows, data and artifacts, models, triggers, and member management for user collaboration.
Read more in Projects.

• Function — a software package with one or more methods and runtime-specific attributes (such as image, com-
mand, arguments, and environment). Read more in MLRun serverless functions and Functions.

• Run — an object that contains information about an executed function. The run object is created as a result
of running a function, and contains the function attributes (such as arguments, inputs, and outputs), as well the
execution status and results (including links to output artifacts). Read more in Running a job.

• Artifact — versioned data artifacts (such as data sets, files and models) are produced or consumed by functions,
runs, and workflows. Read more in Artifacts.

• Workflow — defines a functions pipeline or a directed acyclic graph (DAG) to execute using Kubeflow Pipelines
or MLRun Real-time serving pipelines. Read more in Workflows.

• UI — a graphical user interface (dashboard) for displaying and managing projects and their contained experi-
ments, artifacts, and code.

9
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CHAPTER

FIVE

MLOPS DEVELOPMENT WORKFLOW

With MLrun, you can build an automated end to end ML pipeline comprising the following steps:

1. Data collection and preparation

2. Training

3. Building online ML services (online serving)

4. Continuous monitoring, governance, and retraining

5.1 Data collection and preparation

There is no ML without data. Before everything else, ML teams need access to historical and/or online data from
multiple sources, and they must catalog and organize the data in a way that allows for simple and fast analysis (for
example, by storing data in columnar data structures, such as Parquet).

In most cases, the raw data cannot be used as-is for machine learning algorithms for various reasons such as:

• The data is low quality (missing fields, null values, etc.) and requires cleaning and imputing.

• The data needs to be converted to numerical or categorical values which can be processed by algorithms.

• The data is unstructured in text, json, image, or audio formats, and needs to be converted to tabular or vector
formats.

• The data needs to be grouped or aggregated to make it meaningful.

• The data is encoded or requires joins with reference information.

• The ML process starts with manual exploratory data analysis and feature engineering on small data extractions.
In order to bring accurate models into production, ML teams must work on larger datasets and automate the
process of collecting and preparing the data.

Furthermore, batch collection and preparation methodologies such as ETL, SQL queries, and batch analytics don’t
work well for operational or real-time pipelines. As a result, ML teams often build separate data pipelines which use
stream processing, NoSQL, and containerized micro- services. 80% of data today is unstructured, so an essential part
of building operational data pipelines is to convert unstructured textual, audio, and visual data into machine learning-
or deep learning-friendly data organization.

11
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MLOps solutions should incorporate a feature store that defines the data collection and transformations just once for
both batch and real-time scenarios, processes features automatically without manual involvement, and serves the fea-
tures from a shared catalog to training, serving, and data governance applications. Feature stores must also extend
beyond traditional analytics and enable advanced transformations on unstructured data and complex layouts.

5.2 Training

Whether it’s deep learning or machine learning, MLRun allows you to train your models at scale and capture all the
relevant metadata for experiments tracking and lineage.

With MLOps, ML teams build machine learning pipelines that automatically collect and prepare data, select optimal
features, run training using different parameter sets or algorithms, evaluate models, and run various model and system
tests. All the executions, along with their data, metadata, code and results must be versioned and logged, providing
quick results visualization, compare them with past results and understand which data was used to produce each model.

Pipelines can be more complex—for example, when ML teams need to develop a combination of models, or use Deep
Learning or NLP.

ML pipelines can be triggered manually, or preferably triggered automatically when:

1. The code, packages or parameters change

2. The input data or feature engineering logic change

3. Concept drift is detected, and the model needs to be re-trained with fresh data

ML pipelines:

• Are built using micro-services (containers or serverless functions), usually over Kubernetes.

• Have all their inputs (code, package dependencies, data, parameters) and the outputs (logs, metrics, data/features,
artifacts, models) tracked for every step in the pipeline, in order to reproduce and/or explain our experiment
results.

• Use versioning for all the data and artifacts used throughout the pipeline.

• Store code and configuration in versioned Git repositories.

12 Chapter 5. MLOps development workflow
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• Use Continuous Integration (CI) techniques to automate the pipeline initiation, test automation, review and ap-
proval process.

Pipelines should be executed over scalable services or functions, which can span elastically over multiple servers or con-
tainers. This way, jobs complete faster, and computation resources are freed up once they complete, saving significant
costs.

The resulting models are stored in a versioned model repository along with metadata, performance metrics, required
parameters, statistical information, etc. Models can be loaded later into batch or real-time serving micro-services or
functions.

5.3 Building online ML services (online serving)

With MLRun, in addition to a batch inference, you can deploy a robust and scalable real-time pipeline for more complex
and online scenarios. MLRun uses Nuclio, an open source serverless framework for creating real-time pipelines for
model deployment.

Once an ML model has been built, it needs to be integrated with real-world data and the business application or front-
end services. The whole application or parts thereof need to be deployed without disrupting the service. Deployment
can be extremely challenging if the ML components aren’t treated as an integral part of the application or production
pipeline.

Production pipelines usually consist of:

• Real-time data collection, validation, and feature engineering logic

• One or more model serving services

• API services and/or application integration logic

• Data and model monitoring services

• Resource monitoring and alerting services

• Event, telemetry, and data/features logging services

The different services are interdependent. For example, if the inputs to a model change, the feature engineering logic
must be upgraded along with the model serving and model monitoring services. These dependencies require online
production pipelines (graphs) to reflect these changes.

Production pipelines can be more complex when using unstructured data, deep learning, NLP or model ensembles, so
having flexible mechanisms to build and wire up our pipeline graphs is critical.

Production pipelines are usually interconnected with fast streaming or messaging protocols, so they should be elastic
to address traffic and demand fluctuations, and they should allow non-disruptive upgrades to one or more elements of
the pipeline. These requirements are best addressed with fast serverless technologies.

Production pipeline development and deployment flow:

1. Develop production components:

5.3. Building online ML services (online serving) 13



mlrun, Release UNKNOWN

• API services and application integration logic

• Feature collection, validation, and transformation

• Model serving graphs

2. Test online pipelines with simulated data

3. Deploy online pipelines to production

4. Monitor models and data and detect drift

5. Retrain models and re-engineer data when needed

6. Upgrade pipeline components (non-disruptively) when needed

5.4 Continuous monitoring, governance, and retraining

Once the model is deployed, use MLRun to track the operational statistics as well as identify drift. When drift is
identified, MLRun can trigger the training pipeline to train a new model.

AI services and applications are becoming an essential part of any business. This trend brings with it liabilities, which
drive further complexity. ML teams need to add data, code and experiment tracking, monitor data to detect quality prob-
lems, and monitor models to detect concept drift and improve model accuracy through the use of AutoML techniques
and ensembles, and so on.

Nothing lasts forever, not even carefully constructed models that have been trained using mountains of well-labeled
data. ML teams need to react quickly to adapt to constantly changing patterns in real-world data. Monitoring machine
learning models is a core component of MLOps to keep deployed models current and predicting with the utmost
accuracy, and to ensure they deliver value long-term.

14 Chapter 5. MLOps development workflow
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CHAPTER

SIX

INSTALLATION AND SETUP GUIDE

This guide outlines the steps for installing and running MLRun.

MLRun comprises two parts: MLRun Server and MLRUN client.

In this section

• Deployment options

• Non-root user support

• Security context

• Set up your client

• MLRun client backward compatibility

6.1 Deployment options

There are several deployment options:

• Local deployment: Deploy a Docker on your laptop or on a single server. This option is good for testing the
waters or when working in a small scale environment. It’s limited in terms of computing resources and scale,
but simpler for deployment.

• Kubernetes cluster: Deploy an MLRun server on Kubernetes. This option deploys MLRun on a Kubernetes
cluster, which supports elastic scaling. Yet, it is more complex to install as it requires you to install Kubernetes
on your own.

• Iguazio’s Managed Service: A commercial offering by Iguazio. This is the fastest way to explore the full set of
MLRun functionalities. Note that Iguazio provides a 14 day free trial.

6.2 Non-root user support (#non-root-support)

By default, MLRun assigns the root user to MLRun runtimes and pods. You can improve the security context by
changing the security mode, which is implemented by Igauzio during installation, and applied system-wide:

• Override: Use the user id of the user that triggered the current run or use the nogroupid for group id. Requires
Iguazio v3.5.1.

• Disabled: Security context is not auto applied (the system aplies the root user). (default)
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6.3 Security context (#security-context)

If your system is configured in disabled mode, you can apply the security context to individual runtimes/pods by using
function.with_security_context, and the job is assigned to the user or to the user’s group that ran the job. (You
cannot override the user of individual jobs if the system is configured in override mode.) The options are:

from kubernetes import client as k8s_client

security_context = k8s_client.V1SecurityContext(
run_as_user=1000,
run_as_group=3000,

)
function.with_security_context(security_context)

See the full definition of the V1SecurityContext object.

Some services do not support security context yet:

• Infrastructure services

– Kubeflow pipelines core services

• Services created by MLRun

– Kaniko, used for building images. (To avoid using Kaniko, use prebuilt images that contain all the require-
ments.)

– Spark services

6.4 Set up your client

• You can work with your favorite IDE (e.g. Pycharm, VScode, Jupyter , Colab etc. . . ). Read how to configure
your client against the deployed MLRun server in How to configure your client.

Once you have installed and configured MLRun, follow the Quick Start tutorial and additional Tutorials and Examples
to learn how to use MLRun to develop and deploy machine learning applications to production.

For interactive installation and usage tutorials, try the MLRun Katakoda Scenarios.

6.5 MLRun client backward compatibility

Starting from MLRun 0.10.0, the MLRun client and images are compatible with minor MLRun releases that are released
during the following 6 months. When you upgrade to 0.11.0, for example, you can continue to use your 0.10-based
images.

Important

• Images from 0.9.0 are not compatible with 0.10.0. Backward compatibility starts from 0.10.0.

• When you upgrade the MLRun major version, for example 0.10.x to 1.0.x, there is no backward compatibility.

• The feature store is not backward compatible.
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• When you upgrade the platform, for example from 3.2 to 3.3, the clients should be upgraded. There is no
guaranteed compatibility with an older MLRun client after a platform upgrade.

See also Images and their usage in MLRun.

6.5.1 Install MLRun locally using Docker

You can install and use MLRun and Nuclio locally on your computer. This does not include all the services and elastic
scaling capabilities, which you can get with the Kubernetes based deployment, but it is much simpler to start with.

Note

Using Docker is limited to local, Nuclio, serving runtimes, and local pipelines.

Prerequisites

• Memory: 8GB

• Storage: 7GB

Overview

Use docker compose to install MLRun. It deploys the MLRun service, MLRun UI, Nuclio serverless engine, and
optionally the Jupyter server. The MLRun service, MLRun UI, Nuclio, and
Jupyter, do not have default resources. This means that they are set with the default cluster/namespace resources limits.
These can be modified.

There are two installation options:

• Use MLRun with your own client (PyCharm, VSCode, Jupyter)

• Use MLRun with MLRun Jupyter image (pre loaded with examples/demos)

In both cases you need to set the SHARED_DIR environment variable to point to a host path for storing MLRun artifacts
and DB, for example export SHARED_DIR=~/mlrun-data (or use set SHARED_DIR=c:\mlrun-data in windows).
Make sure the directory exists.

It is recommended to set the HOST_IP variable with your computer IP address (required for Nuclio dashboard). You
can select a specific MLRun version with the TAG variable and Nuclio version with the NUCLIO_TAG variable.

Add the -d flag to docker-compose for running in detached mode (in the background).

Note

Support for running as a non-root user was added in 1.0.5, hence the underlying exposed port was changed. If you want
to use previous mlrun versions, modify the mlrun-ui port from 8090 back to 80.

Watch the installation:

6.5. MLRun client backward compatibility 17
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Use MLRun with your own client

The following commands install MLRun and Nuclio for work with your own IDE or notebook.

[Download here] the compose.yaml file, save it to the working dir and type:

show the compose.yaml file

services:
mlrun-api:
image: "mlrun/mlrun-api:${TAG:-1.1.1}"
ports:
- "8080:8080"

environment:
MLRUN_ARTIFACT_PATH: "${SHARED_DIR}/{{project}}"
# using local storage, meaning files / artifacts are stored locally, so we want to␣

→˓allow access to them
MLRUN_HTTPDB__REAL_PATH: /data
MLRUN_HTTPDB__DATA_VOLUME: "${SHARED_DIR}"
MLRUN_LOG_LEVEL: DEBUG
MLRUN_NUCLIO_DASHBOARD_URL: http://nuclio:8070
MLRUN_HTTPDB__DSN: "sqlite:////data/mlrun.db?check_same_thread=false"
MLRUN_UI__URL: http://localhost:8060
# not running on k8s meaning no need to store secrets
MLRUN_SECRET_STORES__KUBERNETES__AUTO_ADD_PROJECT_SECRETS: "false"

volumes:
- "${SHARED_DIR:?err}:/data"

networks:
- mlrun

mlrun-ui:
image: "mlrun/mlrun-ui:${TAG:-1.1.1}"
ports:
- "8060:8090"

environment:
MLRUN_API_PROXY_URL: http://mlrun-api:8080
MLRUN_NUCLIO_MODE: enable
MLRUN_NUCLIO_API_URL: http://nuclio:8070
MLRUN_NUCLIO_UI_URL: http://localhost:8070

networks:
- mlrun

nuclio:
image: "quay.io/nuclio/dashboard:${NUCLIO_TAG:-stable-amd64}"
ports:
- "8070:8070"

environment:
NUCLIO_DASHBOARD_EXTERNAL_IP_ADDRESSES: "${HOST_IP:-127.0.0.1}"

volumes:
- /var/run/docker.sock:/var/run/docker.sock

networks:
- mlrun

(continues on next page)
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(continued from previous page)

networks:
mlrun: {}

Linux/Mac

export HOST_IP=<your host IP address>
export SHARED_DIR=~/mlrun-data
mkdir $SHARED_DIR -p
docker-compose -f compose.yaml up

Your HOST_IP address can be found using the ip addr or ifconfig commands. It is recommended to select an
address that does not change dynamically (for example the IP of the bridge interface).

Windows (cmd)

set HOST_IP=<your host IP address>
set SHARED_DIR=c:\mlrun-data
mkdir %SHARED_DIR%
docker-compose -f compose.yaml up

Your HOST_IP address can be found using the ipconfig shell command, it is recommended to select an address that
does not change dynamically (for example the IP of the vEthernet interface).

Powershell

$Env:HOST_IP=<your host IP address>
$Env:SHARED_DIR="~/mlrun-data"
mkdir $Env:SHARED_DIR
docker-compose -f compose.yaml up

Your HOST_IP address can be found using the Get-NetIPConfiguration cmdlet, it is recommended to select an
address that does not change dynamically (for example the IP of the vEthernet interface).

This creates 3 services:

• MLRun API (in http://localhost:8080)

• MLRun UI (in http://localhost:8060)

• Nuclio Dashboard/controller (in http://localhost:8070)

After installing MLRun service, set your client environment to work with the service, by setting the MLRun path env
variable to MLRUN_DBPATH=http://localhost:8080 or using .env files (see setting client environment).

6.5. MLRun client backward compatibility 19
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Use MLRun with MLRun Jupyter image

For the quickest experience with MLRun you can deploy MLRun with a pre integrated Jupyter server loaded with
various ready-to-use MLRun examples.

[Download here] the compose.with-jupyter.yaml file, save it to the working dir and type:

services:
jupyter:
image: "mlrun/jupyter:${TAG:-1.1.1}"
ports:
- "8080:8080"
- "8888:8888"

environment:
MLRUN_ARTIFACT_PATH: "/home/jovyan/data/{{project}}"
MLRUN_LOG_LEVEL: DEBUG
MLRUN_NUCLIO_DASHBOARD_URL: http://nuclio:8070
MLRUN_HTTPDB__DSN: "sqlite:////home/jovyan/data/mlrun.db?check_same_thread=false"
MLRUN_UI__URL: http://localhost:8060
# using local storage, meaning files / artifacts are stored locally, so we want to␣

→˓allow access to them
MLRUN_HTTPDB__REAL_PATH: "/home/jovyan/data"
# not running on k8s meaning no need to store secrets
MLRUN_SECRET_STORES__KUBERNETES__AUTO_ADD_PROJECT_SECRETS: "false"

volumes:
- "${SHARED_DIR:?err}:/home/jovyan/data"

networks:
- mlrun

mlrun-ui:
image: "mlrun/mlrun-ui:${TAG:-1.1.1}"
ports:
- "8060:8090"

environment:
MLRUN_API_PROXY_URL: http://jupyter:8080
MLRUN_NUCLIO_MODE: enable
MLRUN_NUCLIO_API_URL: http://nuclio:8070
MLRUN_NUCLIO_UI_URL: http://localhost:8070

networks:
- mlrun

nuclio:
image: "quay.io/nuclio/dashboard:${NUCLIO_TAG:-stable-amd64}"
ports:
- "8070:8070"

environment:
NUCLIO_DASHBOARD_EXTERNAL_IP_ADDRESSES: "${HOST_IP:-127.0.0.1}"

volumes:
- /var/run/docker.sock:/var/run/docker.sock

networks:
- mlrun

networks:
mlrun: {}

20 Chapter 6. Installation and setup guide



mlrun, Release UNKNOWN

Linux/Mac

export HOST_IP=<your host IP address>
export SHARED_DIR=~/mlrun-data
mkdir $SHARED_DIR -p
docker-compose -f compose.with-jupyter.yaml up

Your HOST_IP address can be found using the ip addr or ifconfig commands. It is recommended to select an
address that does not change dynamically (for example the IP of the bridge interface).

Windows (cmd)

set HOST_IP=<your host IP address>
set SHARED_DIR=c:\mlrun-data
mkdir %SHARED_DIR%
docker-compose -f compose.with-jupyter.yaml up

Your HOST_IP address can be found using the ipconfig shell command, it is recommended to select an address that
does not change dynamically (for example the IP of the vEthernet interface).

Powershell

$Env:HOST_IP=<your host IP address>
$Env:SHARED_DIR="~/mlrun-data"
mkdir $Env:SHARED_DIR
docker-compose -f compose.with-jupyter.yaml up

Your HOST_IP address can be found using the Get-NetIPConfiguration cmdlet, it is recommended to select an
address that does not change dynamically (for example the IP of the vEthernet interface).

This creates 4 services:

• Jupyter lab (in http://localhost:8888)

• MLRun API (in http://localhost:8080), running on the Jupyter container

• MLRun UI (in http://localhost:8060)

• Nuclio Dashboard/controller (in http://localhost:8070)

After the installation, access the Jupyter server (in http://localhost:8888) and run through the quick-start tutorial
and demos. You can see the projects, tasks, and artifacts in MLRun UI (in http://localhost:8060)

The Jupyter environment is pre-configured to work with the local MLRun and Nuclio services. You can switch to a
remote or managed MLRun cluster by editing the mlrun.env file in the Jupyter files tree.

The artifacts and DB are stored under /home/jovyan/data (/data in Jupyter tree).

6.5. MLRun client backward compatibility 21
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6.5.2 Install MLRun on a Kubernetes Cluster

In this section

• Prerequisites

• Installing on Docker Desktop

• Installing the chart

• Installing Kubeflow

• Start working

• Configuring the remote environment

• Advanced chart configuration

• Uninstalling the chart

• Upgrading the chart

Prerequisites

• Access to a Kubernetes cluster. You must have administrator permissions in order to install MLRun on your
cluster. For local installation on Windows or Mac, Docker Desktop is recommended. MLRun fully supports k8s
releases 1.22 and 1.23.

• The Kubernetes command-line tool (kubectl) compatible with your Kubernetes cluster is installed. Refer to the
kubectl installation instructions for more information.

• Helm 3.6 CLI is installed. Refer to the Helm installation instructions for more information.

• An accessible docker-registry (such as Docker Hub). The registry’s URL and credentials are consumed by the
applications via a pre-created secret.

• Storage: 7Gi

Note

The MLRun kit resources (MLRun-API, MLRun-UI, Jupyter, and Nuclio) are configured initially with the default
cluster/namespace resources limits. You can modify the resources from outside if needed.

Watch the installation:

Installing on Docker Desktop

Docker Desktop is available for Mac and Windows. For download information, system requirements, and installation
instructions, see:

• Install Docker Desktop on Mac

• Install Docker Desktop on Windows. Note that WSL 2 backend was tested, Hyper-V was not tested.
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Configuring Docker Desktop

Docker Desktop includes a standalone Kubernetes server and client, as well as Docker CLI integration that runs on your
machine. The Kubernetes server runs locally within your Docker instance. To enable Kubernetes support and install
a standalone instance of Kubernetes running as a Docker container, go to Preferences > Kubernetes and then click
Enable Kubernetes. Click Apply & Restart to save the settings and then click Install to confirm. This instantiates
the images that are required to run the Kubernetes server as containers, and installs the /usr/local/bin/kubectl
command on your machine. For more information, see the Kubernetes documentation.

It’s recommended to limit the amount of memory allocated to Kubernetes. If you’re using Windows and WSL 2, you
can configure global WSL options by placing a .wslconfig file into the root directory of your users folder: C:\
Users\<yourUserName>\.wslconfig. Keep in mind that you might need to run wsl --shutdown to shut down
the WSL 2 VM and then restart your WSL instance for these changes to take effect.

[wsl2]
memory=8GB # Limits VM memory in WSL 2 to 8 GB

To learn about the various UI options and their usage, see:

• Docker Desktop for Mac user manual

• Docker Desktop for Windows user manual

Installing the chart

Note

These instructions use mlrun as the namespace (-n parameter). You can choose a different namespace in your kuber-
netes cluster.

Create a namespace for the deployed components:

kubectl create namespace mlrun

Add the v3io-stable helm chart repo:

helm repo add v3io-stable https://v3io.github.io/helm-charts/stable

Update the repo to make sure you’re getting the latest chart:

helm repo update

Create a secret with your docker-registry named registry-credentials:

kubectl --namespace mlrun create secret docker-registry registry-credentials \
--docker-server <your-registry-server> \
--docker-username <your-username> \
--docker-password <your-password> \
--docker-email <your-email>

Where:

• <your-registry-server> is your Private Docker Registry FQDN. (https://index.docker.io/v1/ for Docker
Hub).
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• <your-username> is your Docker username.

• <your-password> is your Docker password.

• <your-email> is your Docker email.

Note

First-time MLRun users will experience a relatively longer installation time because all required images are being
pulled locally for the first time (it will take an average of 10-15 minutes mostly depends on your internet speed).

To install the chart with the release name mlrun-kit use the following command. Note the reference to the pre-created
registry-credentials secret in global.registry.secretName:

helm --namespace mlrun \
install mlrun-kit \
--wait \
--timeout 960s \
--set global.registry.url=<registry-url> \
--set global.registry.secretName=registry-credentials \
v3io-stable/mlrun-kit

Where <registry-url> is the registry URL which can be authenticated by the registry-credentials secret (e.g.,
index.docker.io/<your-username> for Docker Hub).

Installing on Minikube/VM**

The Open source MLRun kit uses node ports for simplicity. If your Kubernetes cluster is running inside a VM,
as is usually the case when using minikube, the Kubernetes services exposed over node ports are not available on
your local host interface, but instead, on the virtual machine’s interface. To accommodate for this, use the global.
externalHostAddress value on the chart. For example, if you’re using the kit inside a minikube cluster (with some
non-empty vm-driver), pass the VM address in the chart installation command as follows:

helm --namespace mlrun \
install my-mlrun \
--wait \
--timeout 960s \
--set global.registry.url=<registry URL e.g. index.docker.io/iguazio > \
--set global.registry.secretName=registry-credentials \
--set global.externalHostAddress=$(minikube ip) \
v3io-stable/mlrun-kit

Where $(minikube ip) shell command resolving the external node address of the k8s node VM.
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Installing Kubeflow

You can run your functions while saving outputs and artifacts in a way that is visible to Kubeflow Pipelines. To use this
capability you need to install Kubeflow on your cluster. Refer to the Kubeflow documentation for more information.

Usage

Your applications are now available in your local browser:

• Jupyter-notebook - http://localhost:30040

• Nuclio - http://localhost:30050

• MLRun UI - http://localhost:30060

• MLRun API (external) - http://localhost:30070 (health check via http://localhost:30070/api/healthz)

Check state

You can check current state of installation via command kubectl -n mlrun get pods, where the main information
is in columns Ready and State. If all images have already been pulled locally, typically it will take a minute for all
services to start.

Note

The above links assume your Kubernetes cluster is exposed on localhost. If that’s not the case, the different components
are available on the provided externalHostAddress

• You can change the ports by providing values to the helm install command.

• You can add and configure a k8s ingress-controller for better security and control over external access.

Start working

Open Jupyter Lab on jupyter-lab UI and run the code in quick-start.ipynb notebook.

Important

Make sure to save your changes in the data folder within the Jupyter Lab. The root folder and any other folder do not
retain the changes when you restart the Jupyter Lab.

Configuring the remote environment

You can use your code on a local machine while running your functions on a remote cluster.
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Prerequisites

Before you begin, ensure that the following prerequisites are met:

• The MLRun version installed with the MLRun Kit is the same as the MLRun version on your remote cluster. If
needed, upgrade MLRun either in your local installation or on the remote cluster so that they match.

• You have remote access to your MLRun service (i.e. to the service URL on the remote Kubernetes cluster).

Setting environment variables

Define your MLRun configuration.

• As a minimum requirement: Set MLRUN_DBPATH to the URL of the remote MLRun database/API service; replace
the <...> placeholders to identify your remote target:

MLRUN_DBPATH=<API endpoint of the MLRun APIs service endpoint; e.g., "https://mlrun-
→˓api.default-tenant.app.mycluster.iguazio.com">

• To store the artifacts on the remote server, you need to set the MLRUN_ARTIFACT_PATH to the desired root folder
of your artifact. You can use template values in the artifact path. The supported values are:

– {{project}} to include the project name in the path.

– {{run.uid}} to include the specific run uid in the artifact path.

For example:

MLRUN_ARTIFACT_PATH=/User/artifacts/{{project}}

or:

MLRUN_ARTIFACT_PATH=/User/artifacts/{{project}}/{{run.uid}}

• If the remote service is on an instance of the Iguazio MLOps Platform (“the platform”), set the following
environment variables as well. Replace the <...> placeholders with the details for your specific platform cluster:

V3IO_USERNAME=<username of a platform user with access to the MLRun service>
V3IO_API=<API endpoint of the webapi service endpoint; e.g., "https://default-
→˓tenant.app.mycluster.iguazio.com:8444">
V3IO_ACCESS_KEY=<platform access key>

You can get the platform access key from the platform dashboard: select the user-profile picture or icon from the
top right corner of any page, and select Access Keys from the menu. In the Access Keys dialog, either copy an
existing access key or create a new key and copy it. Alternatively, you can get the access key by checking the
value of the V3IO_ACCESS_KEY environment variable in a web- shell or Jupyter Notebook service.
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Advanced chart configuration

Configurable values are documented in the values.yaml, and the values.yaml of all sub charts. Override those in
the normal methods.

Uninstalling the chart

helm --namespace mlrun uninstall mlrun-kit

Terminating pods and hanging resources

This chart generates several persistent volume claims and also provisions an NFS provisioning server, giving persistency
(via PVC) out of the box. Because of the persistency of PV/PVC resources, after installing this chart, PVs and PVCs are
created. Upon uninstallation, any hanging / terminating pods hold the PVs and PVCs respectively, since those prevent
their safe removal. Since pods that are stuck in terminating state seem to be a never-ending plague in k8s, note this,
and remember to clean the remaining PVs and PVCs.

Handing stuck-at-terminating pods:

kubectl --namespace mlrun delete pod --force --grace-period=0 <pod-name>

Reclaim dangling persistency resources:

WARNING

This will result in data loss!

# To list PVCs
kubectl --namespace mlrun get pvc
...

# To remove a PVC
kubectl --namespace mlrun delete pvc <pvc-name>
...

# To list PVs
kubectl --namespace mlrun get pv
...

# To remove a PV
kubectl --namespace mlrun delete pv <pv-name>

# Remove hostpath(s) used for mlrun (and possibly nfs). Those will be created by default␣
→˓under /tmp, and will contain
# your release name, e.g.:
rm -rf /tmp/mlrun-kit-mlrun-kit-mlrun
...
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Upgrading the chart

In order to upgrade to the latest version of the chart, first make sure you have the latest helm repo

helm repo update

Then upgrade the chart:

helm upgrade --install --reuse-values mlrun-kit v3io-stable/mlrun-kit

6.5.3 Set up your client environment

You can write your code on a local machine while running your functions on a remote cluster. This tutorial explains
how to set this up.

In this section

• Prerequisites

• Configure remote environment

– Set environment variables

– Load the configuration and credential environmental variables from file

– Load the configuration and credential environmental variables from the command line

• IDE configuration

– Remote environment from PyCharm

– Remote environment from VSCode

∗ Create environment file

∗ Create Python debug configuration

∗ Set environment file in debug configuration

Prerequisites

Before you begin, ensure that the following prerequisites are met:

1. Applications:

• Supports pip and conda

• Recommended pip 22.x+

• Python 3.8

2. Install MLRun locally.

You need to install MLRun locally. Make sure the that the MLRun version you install is the same as the MLRun
service version. Install a specific version using the following command; replace the <version> placeholder with
the MLRun version number (e.g., 1.0.0):

pip install mlrun==<version>

There are a two pip install options:
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• To install the requirements in the requirements.txt, run: pip install mlrun

• If you expect to connect to, or work with, cloud providers (Azure/Google Cloud/S3), you can install addi-
tional packages. This is not part of the regular requirements since not all users work with those platforms.
Using this option reduces the dependencies and the size of the installation. The additional packages include:

– pip install mlrun[s3] # Install requirements for S3

– pip install mlrun[azure-blob-storage] # install requirements for Azure blob storage

– pip install mlrun[google-cloud-storage] # install requirements for Google cloud storage

See the full list here. To install all extras, run: pip install mlrun[complete]

3. Alternatively, if you already installed a previous version of MLRun, upgrade it by running:

pip install -U mlrun==<version>

4. Ensure that you have remote access to your MLRun service (i.e., to the service URL on the remote Kubernetes
cluster).

Configure remote environment

Set environment variables

Set environment variables to define your MLRun configuration. As a minimum requirement:

1. Set MLRUN_DBPATH to the URL of the remote MLRun database/API service:

MLRUN_DBPATH=<URL endpoint of the MLRun APIs service endpoint; e.g., "https://mlrun-
→˓api.default-tenant.app.mycluster.iguazio.com">

2. If the remote service is on an instance of the Iguazio MLOps Platform (“the platform”), set the following
environment variables as well:

V3IO_USERNAME=<username of a platform user with access to the MLRun service>
V3IO_ACCESS_KEY=<platform access key>

You can get the platform access key from the platform dashboard: select the user-profile picture or icon from the
top right corner of any page, and select Access Keys from the menu. In the Access Keys window, either copy
an existing access key or create a new key and copy it. Alternatively, you can get the access key by checking the
value of the V3IO_ACCESS_KEY environment variable in a web- shell or Jupyter Notebook service.

You can also set the environment using MLRun SDK, for example:

# Use local service
mlrun.set_environment("http://localhost:8080", artifact_path="./")
# Use remote service
mlrun.set_environment("<remote-service-url>", access_key="xyz", username="joe")
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Load the configuration and credential environmental variables from file

You can load the env via config file when working from remote (e.g. via Pycharm).

Example env file:

# this is an env file
V3IO_USERNAME=admin
V3IO_ACCESS_KEY=MYKEY123
MLRUN_DBPATH=https://mlrun-api.default-tenant.app.xxx.iguazio-cd1.com
AWS_ACCESS_KEY_ID=XXXX
AWS_SECRET_ACCESS_KEY=YYYY

Usage:

• set_env_from_file() for reading .env files, setting the OS environment and reloading MLRun config

• project.set_secrets() reads dict or secrets env file and stores it in the project secrets (note that ML-
RUN_DBPATH and V3IO_xxx vars are not written to the project secrets)

• function.set_envs() set the pod environment variables from key/value dict or .env file

Note

The V3IO API is determined automatically. If you want to connect to a different V3IO service, set the ser-
vice in the variable,br. V3IO_API=<API endpoint of the webapi service endpoint; e.g., "https://
default-tenant.app.mycluster.iguazio.com:8444">

# set the env vars from a file and also return the results as a dict (e.g. for using in␣
→˓a function)
env_dict = mlrun.set_env_from_file(env_path, return_dict=True)

# read env vars from dict or file and set as project secrets (plus set the local env)
project.set_secrets({"SECRET1": "value"})
project.set_secrets(file_path=env_file)

# copy env from file into a function spec
function.set_envs(file_path=env_file)

Load the configuration and credential environmental variables from the command line

1. Create an env file similar to the example, with lines in the form KEY=VALUE, and comment lines starting with
“#”.

2. Use --env-file <env file path> in mlrun run/build/deploy/project CLI commands to load the config and
credential env vars from file.

3. Set the MLRUN_ENV_FILE=<env file path> env var to point to a default env file (which will be loaded on
import). If the MLRUN_DBPATH points to a remote iguazio cluster and the V3IO_API and/or V3IO_FRAMESD vars
are not set, they will be inferred from the DBPATH.

4. Add the default env file template in the Jupyter container ~/env (to allow quick setup of remote demos).
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IDE configuration

Use these procedures to access MLRun remotely from your IDE (PyCharm or VSCode).

Remote environment from PyCharm

You can use PyCharm with MLRun remote by changing the environment variables configuration.

1. From the main menu, choose Run | Edit Configurations.

2. To set-up default values for all Python configurations, on the left-hand pane of the run/debug configuration dialog,
expand the Templates node and select the Python node. The corresponding configuration template appears in
the right-hand pane. Alternatively, you can edit a specific file configuration by choosing the corresponding file on
the left-hand pane. Choose the Environment Variables edit box and expand it to edit the environment variables.
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3. Add the environment variables and values of MLRUN_DBPATH, MLRUN_ARTIFACT_PATH, V3IO_USERNAME,
V3IO_API, and V3IO_ACCESS_KEY.
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Remote environment from VSCode

Create environment file

Create an environment file called mlrun.env in your workspace folder. Copy-paste the configuration below:

# Remote URL to mlrun service
MLRUN_DBPATH=<API endpoint of the MLRun APIs service endpoint; e.g., "https://mlrun-api.
→˓default-tenant.app.mycluster.iguazio.com">
# Root artifact path on the remote server
MLRUN_ARTIFACT_PATH=<remote path; e.g., "/User/artifacts/{{run.project}}">
# Iguazio platform username
V3IO_USERNAME=<username of a platform user with access to the MLRun service>
# V3IO data access API URL (copy from the services screen)
# Iguazio V3IO data layer credentials (copy from your user settings)
V3IO_ACCESS_KEY=<platform access key>

Note

Make sure that you add .env to your .gitignore file. The environment file contains sensitive information that you
should not store in your source control.
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Create Python debug configuration

Create a debug configuration in VSCode. Configurations are defined in a launch.json file that’s stored in a .vscode
folder in your workspace.

To initialize debug configurations, first select the Run view in the sidebar:

If you don’t yet have any configurations defined, you’ll see a button to Run and Debug, as well as a link to create a
configuration (launch.json) file:

To generate a launch.json file with Python configurations:

1. Click the create a launch.json file link (circled in the image above) or use the Run > Open configurations
menu command.

2. A configuration menu opens from the Command Palette. Select the type of debug configuration you want
for the opened file. For now, in the Select a debug configuration menu that appears, select Python File.
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Note

Starting a debugging session through the Debug Panel, F5 or Run > Start Debugging, when no configuration exists
also brings up the debug configuration menu, but does not create a launch.json file.

3. The Python extension then creates and opens a launch.json file that contains a pre-defined configuration based
on what you previously selected, in this case Python File. You can modify configurations (to add arguments, for
example), and also add custom configurations.
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Set environment file in debug configuration

Add an envFile setting to your configuration with the value of ${workspaceFolder}/mlrun.env

If you created a new configuration in the previous step, your launch.json would look as follows:

{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
"version": "0.2.0",
"configurations": [

{
"name": "Python: Current File",
"type": "python",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"envFile": "${workspaceFolder}/mlrun.env"

}
]

}
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SEVEN

TUTORIALS AND EXAMPLES

The following tutorials provide a hands-on introduction to using MLRun to implement a data science workflow and
automate machine-learning operations (MLOps).

Make sure you start with the Quick start tutorial to understand the basics.

Click to view the tutorial

Quick-start tutorial Introduction to MLRun - Use serverless functions to train and deploy models

Each of the following tutorials is a dedicated Jupyter notebook. You can download them by clicking the download
icon at the top of each page.

7.1 Quick Start Tutorial

How to easily Train and Deploy Models to Production with MLRun

This notebook provides a quick overview of developing and deploying machine learning applications to production
using MLRun MLOps orchestration framework. Watch the video for this tutorial.

Tutorial steps:

• Define MLRun project and ML functions

• Run data processing function and log artifacts

• Use MLRun built-in marketplace functions (data analysis)

• Train, track, and register models

• Hyper-parameter tuning and model/experiment comparison

• Build, test and deploy Model serving functions

• Build and run automated ML pipelines and CI/CD

Install MLRun package and dependencies:

Before you start, make sure MLRun client package is installed (pip install mlrun) and the environment is set
(pointing to a local or Kubernetes based MLRun service).

# verify the sklearn version (restart the notebook after the install), run only once
!pip install scikit-learn~=1.0.0

Requirement already satisfied: scikit-learn~=1.0.0 in /opt/conda/lib/python3.8/site-
→˓packages (1.0.2)
Requirement already satisfied: joblib>=0.11 in /opt/conda/lib/python3.8/site-packages␣
→˓(from scikit-learn~=1.0.0) (1.0.1) (continues on next page)
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(continued from previous page)

Requirement already satisfied: scipy>=1.1.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from scikit-learn~=1.0.0) (1.6.3)
Requirement already satisfied: numpy>=1.14.6 in /opt/conda/lib/python3.8/site-packages␣
→˓(from scikit-learn~=1.0.0) (1.20.2)
Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.8/site-
→˓packages (from scikit-learn~=1.0.0) (2.1.0)
WARNING: You are using pip version 22.0.4; however, version 22.2.2 is available.
You should consider upgrading via the '/opt/conda/bin/python -m pip install --upgrade pip
→˓' command.

import mlrun

# check if we are attached to k8s for running remote (container) jobs
no_k8s = False if mlrun.mlconf.namespace else True

7.1.1 Define MLRun project and ML functions

MLRun Project is a container for all your work on a particular activity or application. Projects host functions,
workflow, artifacts, secrets, and more. Projects have access control and can be accessed by one or more users;
they are usually associated with a GIT and interact with CI/CD frameworks for automation. See the MLRun Projects
documentation.

MLRun Serverless Function specify the source code, base image, extra package requirements, runtime engine kind,
and desired resources (cpu, gpu, mem, storage, . . . ). The runtime engines (local, job, Nuclio, Spark, etc.) automatically
transform the function code and spec into fully managed and elastic services that run over Kubernetes. Function source
code can come from a single file (.py, .ipynb, etc.) or a full archive (git, zip, tar). MLRun can execute an entire
file/notebook or specific function classes/handlers.

Functions in this project:

• gen_breast_cancer.py - Breast Cancer data generator

• trainer.py - Model Training function

• serving.py - Model serving function

Registering the function code and basic info in the project:

project = mlrun.new_project("breast-cancer", "src/", user_project=True, init_git=True)
project.set_function("gen_breast_cancer.py", "get-data", image="mlrun/mlrun")
project.set_function("trainer.py", "trainer",

handler="train", image="mlrun/mlrun")
project.set_function("serving.py", "serving", image="mlrun/mlrun", kind="serving")
project.save()

<mlrun.projects.project.MlrunProject at 0x7f7c523d0580>

The project spec (project.yaml) is saved to the project root dir for use by CI/CD and automation frameworks.
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7.1.2 Run data processing function and log artifacts

Functions are executed (using the CLI or SDK run command) with an optional handler, various params, inputs
and resource requirements. This generates a run object that can be tracked through the CLI, UI, and SDK. Multiple
functions can be executed and tracked as part of a multi-stage pipeline (workflow).

When a function has additional package requirements or need to include the content of a source archive,
you must first build the function using the project.build_function() method.

The local flag indicates if the function is executed locally or “teleported” and executed in the Kubernetes cluster.
The execution progress and results can be viewed in the UI (see hyperlinks below).

Run using the SDK:

gen_data_run = project.run_function("get-data", params={"format": "csv"}, local=True)

> 2022-08-24 08:59:21,463 [warning] it is recommended to use k8s secret (specify secret_
→˓name), specifying the aws_access_key/aws_secret_key directly is unsafe
> 2022-08-24 08:59:21,471 [info] starting run get-data␣
→˓uid=70b13f76e7304f1fb104d348e4ac29ad DB=http://mlrun-api:8080
> 2022-08-24 08:59:21,569 [info] handler was not provided running main (src/gen_breast_
→˓cancer.py)
> 2022-08-24 08:59:28,967 [info] logging run results to: http://mlrun-api:8080
> 2022-08-24 08:59:29,164 [info] saving breast cancer dataframe

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2022-08-24 08:59:31,080 [info] run executed, status=completed

Run using the CLI (command line):

The functions can also be invoked using the following CLI command (see help with: mlrun run --help):

mlrun run -f gen-breast-cancer --local

Print the run state and outputs:

gen_data_run.state()

'completed'

gen_data_run.outputs

{'label_column': 'label',
'dataset': 'store://artifacts/breast-cancer-jovyan/get-data_
→˓dataset:70b13f76e7304f1fb104d348e4ac29ad'}

Print the output dataset artifact (DataItem object) as dataframe
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gen_data_run.artifact("dataset").as_df().head()

mean radius mean texture mean perimeter mean area mean smoothness \
0 17.99 10.38 122.80 1001.0 0.11840
1 20.57 17.77 132.90 1326.0 0.08474
2 19.69 21.25 130.00 1203.0 0.10960
3 11.42 20.38 77.58 386.1 0.14250
4 20.29 14.34 135.10 1297.0 0.10030

mean compactness mean concavity mean concave points mean symmetry \
0 0.27760 0.3001 0.14710 0.2419
1 0.07864 0.0869 0.07017 0.1812
2 0.15990 0.1974 0.12790 0.2069
3 0.28390 0.2414 0.10520 0.2597
4 0.13280 0.1980 0.10430 0.1809

mean fractal dimension ... worst texture worst perimeter worst area \
0 0.07871 ... 17.33 184.60 2019.0
1 0.05667 ... 23.41 158.80 1956.0
2 0.05999 ... 25.53 152.50 1709.0
3 0.09744 ... 26.50 98.87 567.7
4 0.05883 ... 16.67 152.20 1575.0

worst smoothness worst compactness worst concavity worst concave points \
0 0.1622 0.6656 0.7119 0.2654
1 0.1238 0.1866 0.2416 0.1860
2 0.1444 0.4245 0.4504 0.2430
3 0.2098 0.8663 0.6869 0.2575
4 0.1374 0.2050 0.4000 0.1625

worst symmetry worst fractal dimension label
0 0.4601 0.11890 0
1 0.2750 0.08902 0
2 0.3613 0.08758 0
3 0.6638 0.17300 0
4 0.2364 0.07678 0

[5 rows x 31 columns]

7.1.3 Use MLRun built-in marketplace functions (data analysis)

You can import an ML function from the mlrun public marketplace or private repositories and use them in your
project. Let’s import and use a data analysis function:

# import the function
describe = mlrun.import_function('hub://describe')

See the describe function usage instructions in the marketplace or by typing describe.doc()

Analyze the dataset using the describe function (run on the Kubernetes cluster):
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describe_run = describe.run(params={'label_column': 'label'},
inputs={"table": gen_data_run.outputs['dataset']}, local=no_

→˓k8s)

> 2022-08-24 08:59:32,582 [warning] it is recommended to use k8s secret (specify secret_
→˓name), specifying the aws_access_key/aws_secret_key directly is unsafe
> 2022-08-24 08:59:32,596 [info] starting run describe-analyze␣
→˓uid=f663a67686ed4cff81b138ba730ebd08 DB=http://mlrun-api:8080
> 2022-08-24 08:59:33,018 [info] Job is running in the background, pod: describe-analyze-
→˓stxpl
> 2022-08-24 08:59:46,528 [info] The data set named dataset is updated
> 2022-08-24 08:59:46,555 [info] run executed, status=completed
final state: completed

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2022-08-24 08:59:52,505 [info] run executed, status=completed

View the results in MLRun UI:

docs/_static/images/mlrun-quick-start/describe.png

# view generated artifacts (charts)
describe_run.outputs

{'describe-csv': 's3://mlrun/describe-analyze/0/describe-csv.csv',
'plots/hist.html': 's3://mlrun/describe-analyze/0/plots/hist.html',
'histograms': 's3://mlrun/describe-analyze/0/histograms.html',
'scatter-2d': 's3://mlrun/describe-analyze/0/scatter-2d.html',
'violin': 's3://mlrun/describe-analyze/0/violin.html',
'imbalance': 's3://mlrun/describe-analyze/0/imbalance.html',
'imbalance-weights-vec': 's3://mlrun/describe-analyze/0/imbalance-weights-vec.csv',
'correlation-matrix-csv': 's3://mlrun/describe-analyze/0/correlation-matrix-csv.csv',
'correlation': 's3://mlrun/describe-analyze/0/correlation.html'}

# view an artifact in Jupyter
describe_run.artifact("histograms").show()

<IPython.core.display.HTML object>
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7.1.4 Train, track, and register models

in the trainer.py (view) code file, notice the line:

apply_mlrun(model=model, model_name="my_model", x_test=x_test, y_test=y_test)

apply_mlrun() accepts the model object and various optional parameters and automatically logs/registers the model
along with its metrics and various charts. When specifying the x_test and y_test data it generates various plots
and calculations to evaluate the model. Metadata and parameters are automatically recorded (from MLRun context
object) and don’t need to be specified.

trainer_run = project.run_function(
"trainer",
inputs={"dataset": gen_data_run.outputs["dataset"]},
params = {"n_estimators": 100, "learning_rate": 1e-1, "max_depth": 3},
local=True

)

> 2022-08-24 08:59:52,694 [warning] it is recommended to use k8s secret (specify secret_
→˓name), specifying the aws_access_key/aws_secret_key directly is unsafe
> 2022-08-24 08:59:52,702 [info] starting run trainer-train␣
→˓uid=86586a70f9134c66a4e404f02ad92bd8 DB=http://mlrun-api:8080

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2022-08-24 08:59:57,788 [info] run executed, status=completed

Results and artifacts are generated and tracked automatically by MLRun:

trainer_run.outputs

{'accuracy': 0.956140350877193,
'f1_score': 0.965034965034965,
'precision_score': 0.9583333333333334,
'recall_score': 0.971830985915493,
'feature-importance': 's3://mlrun/trainer-train/0/feature-importance.html',
'test_set': 'store://artifacts/breast-cancer-jovyan/trainer-train_test_
→˓set:86586a70f9134c66a4e404f02ad92bd8',
'confusion-matrix': 's3://mlrun/trainer-train/0/confusion-matrix.html',
'roc-curves': 's3://mlrun/trainer-train/0/roc-curves.html',
'calibration-curve': 's3://mlrun/trainer-train/0/calibration-curve.html',
'model': 'store://artifacts/breast-cancer-jovyan/cancer_
→˓classifier:86586a70f9134c66a4e404f02ad92bd8'}

trainer_run.artifact('feature-importance').show()

<IPython.core.display.HTML object>
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7.1.5 Hyper-parameter tuning and model/experiment comparison

Run a GridSearch with a couple of parameters, and select the best run with respect to the max accuracy. (read more
about MLRun Hyper-Param and Iterative jobs).

For basic usage you can run the hyperparameters tuning job by using the arguments:

• hyperparams for the hyperparameters options and values of choice.

• selector for specifying how to select the best model.

hp_tuning_run = project.run_function(
"trainer",
inputs={"dataset": gen_data_run.outputs["dataset"]},
hyperparams={

"n_estimators": [10, 100, 1000],
"learning_rate": [1e-1, 1e-3],
"max_depth": [2, 8]

},
selector="max.accuracy",
local=no_k8s

)

> 2022-08-24 08:59:58,045 [info] starting run trainer-train␣
→˓uid=ada280c6b47b44c090329c5245e4acd6 DB=http://mlrun-api:8080
> 2022-08-24 08:59:58,321 [info] Job is running in the background, pod: trainer-train-
→˓wq7tb
> 2022-08-24 09:00:48,293 [info] best iteration=3, used criteria max.accuracy
> 2022-08-24 09:00:48,868 [info] run executed, status=completed
final state: completed

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2022-08-24 09:00:57,950 [info] run executed, status=completed

View Hyper-param results and the selected run in the MLRun UI:
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Interactive Parallel Coordinates Plot:

List the generated models and compare the different runs:

hp_tuning_run.outputs

{'best_iteration': 3,
'accuracy': 0.9649122807017544,
'f1_score': 0.9722222222222222,
'precision_score': 0.958904109589041,
'recall_score': 0.9859154929577465,
'feature-importance': 's3://mlrun/trainer-train/3/feature-importance.html',
'test_set': 'store://artifacts/breast-cancer-jovyan/trainer-train_test_
→˓set:ada280c6b47b44c090329c5245e4acd6',
'confusion-matrix': 's3://mlrun/trainer-train/3/confusion-matrix.html',
'roc-curves': 's3://mlrun/trainer-train/3/roc-curves.html',

(continues on next page)
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'calibration-curve': 's3://mlrun/trainer-train/3/calibration-curve.html',
'model': 'store://artifacts/breast-cancer-jovyan/cancer_
→˓classifier:ada280c6b47b44c090329c5245e4acd6',
'iteration_results': 's3://mlrun/trainer-train/0/iteration_results.csv',
'parallel_coordinates': 's3://mlrun/trainer-train/0/parallel_coordinates.html'}

# list the models in the project (can apply filters)
models = project.list_models()
for model in models:

print(f"uri: {model.uri}, metrics: {model.metrics}")

uri: store://models/breast-cancer-jovyan/cancer_classifier
→˓#0:b6d617eef1f643579df6a6f864dabae6, metrics: {'accuracy': 0.956140350877193, 'f1_score
→˓': 0.965034965034965, 'precision_score': 0.9583333333333334, 'recall_score': 0.
→˓971830985915493}
uri: store://models/breast-cancer-jovyan/cancer_classifier
→˓#1:1ae77cbb2feb49e587b244af6a1c94f4, metrics: {'accuracy': 0.956140350877193, 'f1_score
→˓': 0.965034965034965, 'precision_score': 0.9583333333333334, 'recall_score': 0.
→˓971830985915493}
uri: store://models/breast-cancer-jovyan/cancer_classifier
→˓#2:1ae77cbb2feb49e587b244af6a1c94f4, metrics: {'accuracy': 0.956140350877193, 'f1_score
→˓': 0.965034965034965, 'precision_score': 0.9583333333333334, 'recall_score': 0.
→˓971830985915493}
uri: store://models/breast-cancer-jovyan/cancer_classifier
→˓#3:1ae77cbb2feb49e587b244af6a1c94f4, metrics: {'accuracy': 0.9649122807017544, 'f1_
→˓score': 0.9722222222222222, 'precision_score': 0.958904109589041, 'recall_score': 0.
→˓9859154929577465}
uri: store://models/breast-cancer-jovyan/cancer_classifier
→˓#4:1ae77cbb2feb49e587b244af6a1c94f4, metrics: {'accuracy': 0.6228070175438597, 'f1_
→˓score': 0.7675675675675676, 'precision_score': 0.6228070175438597, 'recall_score': 1.0}
uri: store://models/breast-cancer-jovyan/cancer_classifier
→˓#5:1ae77cbb2feb49e587b244af6a1c94f4, metrics: {'accuracy': 0.6228070175438597, 'f1_
→˓score': 0.7675675675675676, 'precision_score': 0.6228070175438597, 'recall_score': 1.0}
uri: store://models/breast-cancer-jovyan/cancer_classifier
→˓#6:1ae77cbb2feb49e587b244af6a1c94f4, metrics: {'accuracy': 0.956140350877193, 'f1_score
→˓': 0.965034965034965, 'precision_score': 0.9583333333333334, 'recall_score': 0.
→˓971830985915493}
uri: store://models/breast-cancer-jovyan/cancer_classifier
→˓#7:1ae77cbb2feb49e587b244af6a1c94f4, metrics: {'accuracy': 0.9385964912280702, 'f1_
→˓score': 0.951048951048951, 'precision_score': 0.9444444444444444, 'recall_score': 0.
→˓9577464788732394}
uri: store://models/breast-cancer-jovyan/cancer_classifier
→˓#8:1ae77cbb2feb49e587b244af6a1c94f4, metrics: {'accuracy': 0.9473684210526315, 'f1_
→˓score': 0.9577464788732394, 'precision_score': 0.9577464788732394, 'recall_score': 0.
→˓9577464788732394}
uri: store://models/breast-cancer-jovyan/cancer_classifier
→˓#9:1ae77cbb2feb49e587b244af6a1c94f4, metrics: {'accuracy': 0.9473684210526315, 'f1_
→˓score': 0.9577464788732394, 'precision_score': 0.9577464788732394, 'recall_score': 0.
→˓9577464788732394}
uri: store://models/breast-cancer-jovyan/cancer_classifier
→˓#10:1ae77cbb2feb49e587b244af6a1c94f4, metrics: {'accuracy': 0.6228070175438597, 'f1_
→˓score': 0.7675675675675676, 'precision_score': 0.6228070175438597, 'recall_score': 1.0}

(continues on next page)
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uri: store://models/breast-cancer-jovyan/cancer_classifier
→˓#11:1ae77cbb2feb49e587b244af6a1c94f4, metrics: {'accuracy': 0.6228070175438597, 'f1_
→˓score': 0.7675675675675676, 'precision_score': 0.6228070175438597, 'recall_score': 1.0}
uri: store://models/breast-cancer-jovyan/cancer_classifier
→˓#12:1ae77cbb2feb49e587b244af6a1c94f4, metrics: {'accuracy': 0.9385964912280702, 'f1_
→˓score': 0.951048951048951, 'precision_score': 0.9444444444444444, 'recall_score': 0.
→˓9577464788732394}

# to view the full model object use:
# print(models[0].to_yaml())

# compare the runs (generate interactive parallel coordinates plot and a table)
project.list_runs(name="trainer-train", iter=True).compare()

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

7.1.6 Build, test and deploy Model serving functions

MLRun serving can produce managed, real-time, serverless, pipelines composed of various data processing and ML
tasks. The pipelines use the Nuclio real-time serverless engine, which can be deployed anywhere. For more details and
examples, see the MLRun Serving Graphs.

Load the model serving function from our project

# serving_fn = mlrun.code_to_function("src/serving", filename="serving.py", image="mlrun/
→˓mlrun", kind="serving")
serving_fn = project.func('serving')

Adding a model to it:

serving_fn.add_model('cancer-classifier',model_path=hp_tuning_run.outputs["model"],␣
→˓class_name='ClassifierModel')

<mlrun.serving.states.TaskStep at 0x7f7c40199fd0>

# plot the serving graph topology
serving_fn.spec.graph.plot()

<graphviz.dot.Digraph at 0x7f7c3fc5e1c0>

Simulating the model server locally:

# create a mock (simulator of the real-time function)
server = serving_fn.to_mock_server()

> 2022-08-24 09:00:59,960 [info] model cancer-classifier was loaded
> 2022-08-24 09:00:59,963 [info] Loaded ['cancer-classifier']
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Test the mock model server endpoint:

• List the served models

server.test("/v2/models/", method="GET")

{'models': ['cancer-classifier']}

• Infer using test data

my_data = {
"inputs":[

[
1.371e+01, 2.083e+01, 9.020e+01, 5.779e+02, 1.189e-01, 1.645e-01,
9.366e-02, 5.985e-02, 2.196e-01, 7.451e-02, 5.835e-01, 1.377e+00,
3.856e+00, 5.096e+01, 8.805e-03, 3.029e-02, 2.488e-02, 1.448e-02,
1.486e-02, 5.412e-03, 1.706e+01, 2.814e+01, 1.106e+02, 8.970e+02,
1.654e-01, 3.682e-01, 2.678e-01, 1.556e-01, 3.196e-01, 1.151e-01

],
[

1.308e+01, 1.571e+01, 8.563e+01, 5.200e+02, 1.075e-01, 1.270e-01,
4.568e-02, 3.110e-02, 1.967e-01, 6.811e-02, 1.852e-01, 7.477e-01,
1.383e+00, 1.467e+01, 4.097e-03, 1.898e-02, 1.698e-02, 6.490e-03,
1.678e-02, 2.425e-03, 1.450e+01, 2.049e+01, 9.609e+01, 6.305e+02,
1.312e-01, 2.776e-01, 1.890e-01, 7.283e-02, 3.184e-01, 8.183e-02]

]
}
server.test("/v2/models/cancer-classifier/infer", body=my_data)

/opt/conda/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:

X does not have valid feature names, but GradientBoostingClassifier was fitted with␣
→˓feature names

{'id': '94009095fa4c4ec59217113909d2406b',
'model_name': 'cancer-classifier',
'outputs': [0, 1]}

• Read the model name, ver and schema (input and output features)

server.test("/v2/models/cancer-classifier/", method="GET")

{'name': 'cancer-classifier',
'version': '',
'inputs': [{'name': 'mean radius', 'value_type': 'float'},
{'name': 'mean texture', 'value_type': 'float'},
{'name': 'mean perimeter', 'value_type': 'float'},
{'name': 'mean area', 'value_type': 'float'},
{'name': 'mean smoothness', 'value_type': 'float'},
{'name': 'mean compactness', 'value_type': 'float'},
{'name': 'mean concavity', 'value_type': 'float'},
{'name': 'mean concave points', 'value_type': 'float'},
{'name': 'mean symmetry', 'value_type': 'float'},

(continues on next page)
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{'name': 'mean fractal dimension', 'value_type': 'float'},
{'name': 'radius error', 'value_type': 'float'},
{'name': 'texture error', 'value_type': 'float'},
{'name': 'perimeter error', 'value_type': 'float'},
{'name': 'area error', 'value_type': 'float'},
{'name': 'smoothness error', 'value_type': 'float'},
{'name': 'compactness error', 'value_type': 'float'},
{'name': 'concavity error', 'value_type': 'float'},
{'name': 'concave points error', 'value_type': 'float'},
{'name': 'symmetry error', 'value_type': 'float'},
{'name': 'fractal dimension error', 'value_type': 'float'},
{'name': 'worst radius', 'value_type': 'float'},
{'name': 'worst texture', 'value_type': 'float'},
{'name': 'worst perimeter', 'value_type': 'float'},
{'name': 'worst area', 'value_type': 'float'},
{'name': 'worst smoothness', 'value_type': 'float'},
{'name': 'worst compactness', 'value_type': 'float'},
{'name': 'worst concavity', 'value_type': 'float'},
{'name': 'worst concave points', 'value_type': 'float'},
{'name': 'worst symmetry', 'value_type': 'float'},
{'name': 'worst fractal dimension', 'value_type': 'float'}],
'outputs': [{'name': 'label', 'value_type': 'int'}]}

Deploy a real-time serving function (over Kubernetes or Docker):

Use the mlrun deploy_function() method to build and deploy a Nuclio serving function from your serving-function
code. You can deploy the function object (serving_fn) or reference pre-registered project functions.

This section requires Nuclio to be installed (over k8s or Docker) !

mlrun.deploy_function(serving_fn)

> 2022-08-24 09:01:00,021 [warning] it is recommended to use k8s secret (specify secret_
→˓name), specifying the aws_access_key/aws_secret_key directly is unsafe
> 2022-08-24 09:01:00,030 [info] Starting remote function deploy
2022-08-24 09:01:00 (info) Deploying function
2022-08-24 09:01:00 (info) Building
2022-08-24 09:01:00 (info) Staging files and preparing base images
2022-08-24 09:01:00 (info) Building processor image
2022-08-24 09:05:55 (info) Build complete
2022-08-24 09:06:19 (info) Function deploy complete
> 2022-08-24 09:06:20,612 [info] successfully deployed function: {'internal_invocation_
→˓urls': ['nuclio-breast-cancer-jovyan-serving.mlrun.svc.cluster.local:8080'], 'external_
→˓invocation_urls': ['localhost:30032']}

DeployStatus(state=ready, outputs={'endpoint': 'http://localhost:30032', 'name': 'breast-
→˓cancer-jovyan-serving'})

• Test the live endpoint

serving_fn.invoke("/v2/models/cancer-classifier/infer", body=my_data)

48 Chapter 7. Tutorials and examples



mlrun, Release UNKNOWN

> 2022-08-24 09:06:21,034 [info] invoking function: {'method': 'POST', 'path': 'http://
→˓nuclio-breast-cancer-jovyan-serving.mlrun.svc.cluster.local:8080/v2/models/cancer-
→˓classifier/infer'}

{'id': 'a1780a6c-173e-4649-a12b-4fbda92939b6',
'model_name': 'cancer-classifier',
'outputs': [0, 1]}

7.1.7 Build and run automated ML pipelines and CI/CD

You can easily compose a workflow (see workflow.py from your functions that automatically prepares data, trains,
tests, and deploys the model - every time you change the code or data, or need a refresh. See Project workflows and
automation for details.

Using the SDK:

# run the workflow
run_id = project.run(

workflow_path="workflow.py",
arguments={"model_name": "breast_cancer_classifier"},
watch=True, local=no_k8s)

<IPython.core.display.HTML object>

<graphviz.dot.Digraph at 0x7f7c3fa1c9a0>

<IPython.core.display.HTML object>

View the pipeline in MLRun UI:
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Using the CLI:

With MLRun you can use a single command to load the code from local dir or remote archive (Git, zip, . . . ) and execute
a pipeline. This can be very useful for integration with CI/CD frameworks and practices. See Github/Gitlab and CI/CD
integration for more details.

The following command loads the project from the current dir (.) and executes the workflow with an argument, for
running locally (without k8s).

!mlrun project -r workflow.py -w -a model_name=classifier2 ./src

Loading project tutorial-jovyan into ./src:

kind: project
metadata:
name: tutorial-jovyan

spec:
functions:
- url: gen_breast_cancer.py
name: get-data
kind: job
image: mlrun/mlrun
handler: breast_cancer_generator

- url: trainer.py
name: trainer
image: mlrun/mlrun
handler: train

- url: serving.py
name: serving
kind: serving
image: mlrun/mlrun

workflows: []
artifacts: []
source: ''
desired_state: online

running workflow None file: workflow.py
> 2022-08-24 09:11:55,125 [warning] it is recommended to use k8s secret (specify secret_
→˓name), specifying the aws_access_key/aws_secret_key directly is unsafe
> 2022-08-24 09:11:55,128 [warning] it is recommended to use k8s secret (specify secret_
→˓name), specifying the aws_access_key/aws_secret_key directly is unsafe
> 2022-08-24 09:11:55,131 [warning] it is recommended to use k8s secret (specify secret_
→˓name), specifying the aws_access_key/aws_secret_key directly is unsafe
> 2022-08-24 09:11:55,627 [info] submitted pipeline tutorial-jovyan 2022-08-24 09-11-55␣
→˓id=04c4557f-b33d-444d-bf59-a4d245888225
> 2022-08-24 09:11:55,628 [info] Pipeline run id=04c4557f-b33d-444d-bf59-a4d245888225,␣
→˓check UI for progress
Pipeline started in project tutorial-jovyan id=04c4557f-b33d-444d-bf59-a4d245888225,␣
→˓check progress in http://localhost:30060/projects/tutorial-jovyan/jobs/monitor-
→˓workflows/workflow/04c4557f-b33d-444d-bf59-a4d245888225
> 2022-08-24 09:11:55,629 [info] started run workflow tutorial-jovyan with run id =
→˓'04c4557f-b33d-444d-bf59-a4d245888225' by kfp engine
> 2022-08-24 09:11:55,629 [info] waiting for pipeline run completion
Workflow 04c4557f-b33d-444d-bf59-a4d245888225 finished, state=Succeeded

(continues on next page)
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status name uid results
--------- -------- -------- ----------------------------------------------------------
→˓-------------------------------------------------------------
completed trainer ..9934af accuracy=0.956140350877193,f1_score=0.965034965034965,
→˓precision_score=0.9583333333333334,recall_score=0.971830985915493
completed get-data ..8ec04c label_column=label

7.1.8 What’s Next - Check MLRun Docs and try:

• Use MLRun Feature-store to generate offline and real-time features from operational data

• Track and retrain models with MLRun Model Monitoring

7.2 Train, compare, and register models

This notebook provides a quick overview of training ML models using MLRun MLOps orchestration framework.

Make sure you reviewed the basics in MLRun Quick Start Tutorial.

Tutorial steps:

• Define an MLRun project and a training functions

• Run the function, log the artifacts and model

• Hyper-parameter tuning and model/experiment comparison

• Build and test the model serving functions

7.2.1 MLRun installation and configuration

Before running this notebook make sure mlrun and sklearn packages are installed (pip install mlrun
scikit-learn~=1.0) and that you have configured the access to the MLRun service.

# install MLRun if not installed, run this only once (restart the notebook after the␣
→˓install !!!)
%pip install mlrun scikit-learn~=1.0.0

Requirement already satisfied: mlrun in /opt/conda/lib/python3.8/site-packages (1.1.
→˓0rc24)
Requirement already satisfied: scikit-learn~=1.0.0 in /opt/conda/lib/python3.8/site-
→˓packages (1.0.2)
Requirement already satisfied: pyarrow<7,>=1 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (6.0.1)
Requirement already satisfied: kfp~=1.8.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (1.8.13)
Requirement already satisfied: python-dotenv~=0.17.0 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (0.17.1)
Requirement already satisfied: nest-asyncio~=1.0 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (1.5.1)
Requirement already satisfied: v3io-frames~=0.10.2 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (0.10.2)
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Requirement already satisfied: inflection~=0.5.0 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (0.5.1)
Requirement already satisfied: v3io~=0.5.13 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (0.5.15)
Requirement already satisfied: GitPython~=3.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (3.1.27)
Requirement already satisfied: pydantic~=1.5 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (1.9.2)
Requirement already satisfied: sqlalchemy~=1.3 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (1.4.13)
Requirement already satisfied: dask~=2021.11.2 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (2021.11.2)
Requirement already satisfied: requests~=2.22 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (2.25.1)
Requirement already satisfied: click~=8.0.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (8.0.4)
Requirement already satisfied: humanfriendly~=8.2 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (8.2)
Requirement already satisfied: storey~=1.1.7 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (1.1.7)
Requirement already satisfied: fastapi~=0.78.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (0.78.0)
Requirement already satisfied: tabulate~=0.8.6 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (0.8.10)
Requirement already satisfied: alembic<1.6.0,~=1.4 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (1.5.8)
Requirement already satisfied: cryptography<3.4,~=3.0 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (3.3.2)
Requirement already satisfied: ipython~=7.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (7.23.1)
Requirement already satisfied: urllib3<1.27,>=1.25.4 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (1.26.4)
Requirement already satisfied: chardet<4.0,>=3.0.2 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (3.0.4)
Requirement already satisfied: aiohttp~=3.8 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (3.8.1)
Requirement already satisfied: pyyaml~=5.1 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (5.4.1)
Requirement already satisfied: typing-extensions<5,>=3.10.0 in /opt/conda/lib/python3.8/
→˓site-packages (from mlrun) (4.3.0)
Requirement already satisfied: mergedeep~=1.3 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (1.3.4)
Requirement already satisfied: fsspec~=2021.8.1 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (2021.8.1)
Requirement already satisfied: deepdiff~=5.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (5.8.1)
Requirement already satisfied: numpy<1.23.0,>=1.16.5 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (1.20.2)
Requirement already satisfied: pymysql~=1.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (1.0.2)
Requirement already satisfied: nuclio-jupyter~=0.9.1 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (0.9.2)
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Requirement already satisfied: orjson~=3.3 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (3.7.12)
Requirement already satisfied: distributed~=2021.11.2 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (2021.11.2)
Requirement already satisfied: pandas~=1.2 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (1.2.4)
Requirement already satisfied: semver~=2.13 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (2.13.0)
Requirement already satisfied: v3iofs~=0.1.7 in /opt/conda/lib/python3.8/site-packages␣
→˓(from mlrun) (0.1.11)
Requirement already satisfied: kubernetes~=12.0 in /opt/conda/lib/python3.8/site-
→˓packages (from mlrun) (12.0.1)
Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.8/site-
→˓packages (from scikit-learn~=1.0.0) (2.1.0)
Requirement already satisfied: scipy>=1.1.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from scikit-learn~=1.0.0) (1.6.3)
Requirement already satisfied: joblib>=0.11 in /opt/conda/lib/python3.8/site-packages␣
→˓(from scikit-learn~=1.0.0) (1.0.1)
Requirement already satisfied: aiosignal>=1.1.2 in /opt/conda/lib/python3.8/site-
→˓packages (from aiohttp~=3.8->mlrun) (1.2.0)
Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /opt/conda/lib/python3.8/
→˓site-packages (from aiohttp~=3.8->mlrun) (2.1.0)
Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /opt/conda/lib/python3.8/
→˓site-packages (from aiohttp~=3.8->mlrun) (4.0.2)
Requirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from aiohttp~=3.8->mlrun) (20.3.0)
Requirement already satisfied: multidict<7.0,>=4.5 in /opt/conda/lib/python3.8/site-
→˓packages (from aiohttp~=3.8->mlrun) (6.0.2)
Requirement already satisfied: yarl<2.0,>=1.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from aiohttp~=3.8->mlrun) (1.8.1)
Requirement already satisfied: frozenlist>=1.1.1 in /opt/conda/lib/python3.8/site-
→˓packages (from aiohttp~=3.8->mlrun) (1.3.1)
Requirement already satisfied: python-editor>=0.3 in /opt/conda/lib/python3.8/site-
→˓packages (from alembic<1.6.0,~=1.4->mlrun) (1.0.4)
Requirement already satisfied: Mako in /opt/conda/lib/python3.8/site-packages (from␣
→˓alembic<1.6.0,~=1.4->mlrun) (1.1.4)
Requirement already satisfied: python-dateutil in /opt/conda/lib/python3.8/site-packages␣
→˓(from alembic<1.6.0,~=1.4->mlrun) (2.8.1)
Requirement already satisfied: cffi>=1.12 in /opt/conda/lib/python3.8/site-packages␣
→˓(from cryptography<3.4,~=3.0->mlrun) (1.14.5)
Requirement already satisfied: six>=1.4.1 in /opt/conda/lib/python3.8/site-packages␣
→˓(from cryptography<3.4,~=3.0->mlrun) (1.16.0)
Requirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from dask~=2021.11.2->mlrun) (20.9)
Requirement already satisfied: toolz>=0.8.2 in /opt/conda/lib/python3.8/site-packages␣
→˓(from dask~=2021.11.2->mlrun) (0.11.1)
Requirement already satisfied: cloudpickle>=1.1.1 in /opt/conda/lib/python3.8/site-
→˓packages (from dask~=2021.11.2->mlrun) (2.1.0)
Requirement already satisfied: partd>=0.3.10 in /opt/conda/lib/python3.8/site-packages␣
→˓(from dask~=2021.11.2->mlrun) (1.2.0)
Requirement already satisfied: ordered-set<4.2.0,>=4.1.0 in /opt/conda/lib/python3.8/
→˓site-packages (from deepdiff~=5.0->mlrun) (4.1.0)
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Requirement already satisfied: setuptools in /opt/conda/lib/python3.8/site-packages␣
→˓(from distributed~=2021.11.2->mlrun) (49.6.0.post20210108)
Requirement already satisfied: msgpack>=0.6.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from distributed~=2021.11.2->mlrun) (1.0.2)
Requirement already satisfied: tornado>=6.0.3 in /opt/conda/lib/python3.8/site-packages␣
→˓(from distributed~=2021.11.2->mlrun) (6.1)
Requirement already satisfied: zict>=0.1.3 in /opt/conda/lib/python3.8/site-packages␣
→˓(from distributed~=2021.11.2->mlrun) (2.0.0)
Requirement already satisfied: jinja2 in /opt/conda/lib/python3.8/site-packages (from␣
→˓distributed~=2021.11.2->mlrun) (3.0.3)
Requirement already satisfied: tblib>=1.6.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from distributed~=2021.11.2->mlrun) (1.7.0)
Requirement already satisfied: psutil>=5.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from distributed~=2021.11.2->mlrun) (5.8.0)
Requirement already satisfied: sortedcontainers!=2.0.0,!=2.0.1 in /opt/conda/lib/python3.
→˓8/site-packages (from distributed~=2021.11.2->mlrun) (2.3.0)
Requirement already satisfied: starlette==0.19.1 in /opt/conda/lib/python3.8/site-
→˓packages (from fastapi~=0.78.0->mlrun) (0.19.1)
Requirement already satisfied: anyio<5,>=3.4.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from starlette==0.19.1->fastapi~=0.78.0->mlrun) (3.6.1)
Requirement already satisfied: gitdb<5,>=4.0.1 in /opt/conda/lib/python3.8/site-packages␣
→˓(from GitPython~=3.0->mlrun) (4.0.9)
Requirement already satisfied: jedi>=0.16 in /opt/conda/lib/python3.8/site-packages␣
→˓(from ipython~=7.0->mlrun) (0.18.0)
Requirement already satisfied: pickleshare in /opt/conda/lib/python3.8/site-packages␣
→˓(from ipython~=7.0->mlrun) (0.7.5)
Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /opt/
→˓conda/lib/python3.8/site-packages (from ipython~=7.0->mlrun) (3.0.18)
Requirement already satisfied: matplotlib-inline in /opt/conda/lib/python3.8/site-
→˓packages (from ipython~=7.0->mlrun) (0.1.2)
Requirement already satisfied: pexpect>4.3 in /opt/conda/lib/python3.8/site-packages␣
→˓(from ipython~=7.0->mlrun) (4.8.0)
Requirement already satisfied: decorator in /opt/conda/lib/python3.8/site-packages (from␣
→˓ipython~=7.0->mlrun) (5.0.7)
Requirement already satisfied: traitlets>=4.2 in /opt/conda/lib/python3.8/site-packages␣
→˓(from ipython~=7.0->mlrun) (5.3.0)
Requirement already satisfied: backcall in /opt/conda/lib/python3.8/site-packages (from␣
→˓ipython~=7.0->mlrun) (0.2.0)
Requirement already satisfied: pygments in /opt/conda/lib/python3.8/site-packages (from␣
→˓ipython~=7.0->mlrun) (2.9.0)
Requirement already satisfied: typer<1.0,>=0.3.2 in /opt/conda/lib/python3.8/site-
→˓packages (from kfp~=1.8.0->mlrun) (0.6.1)
Requirement already satisfied: google-api-python-client<2,>=1.7.8 in /opt/conda/lib/
→˓python3.8/site-packages (from kfp~=1.8.0->mlrun) (1.12.11)
Requirement already satisfied: fire<1,>=0.3.1 in /opt/conda/lib/python3.8/site-packages␣
→˓(from kfp~=1.8.0->mlrun) (0.4.0)
Requirement already satisfied: jsonschema<4,>=3.0.1 in /opt/conda/lib/python3.8/site-
→˓packages (from kfp~=1.8.0->mlrun) (3.2.0)
Requirement already satisfied: kfp-pipeline-spec<0.2.0,>=0.1.14 in /opt/conda/lib/
→˓python3.8/site-packages (from kfp~=1.8.0->mlrun) (0.1.16)
Requirement already satisfied: docstring-parser<1,>=0.7.3 in /opt/conda/lib/python3.8/
→˓site-packages (from kfp~=1.8.0->mlrun) (0.14.1)
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Requirement already satisfied: requests-toolbelt<1,>=0.8.0 in /opt/conda/lib/python3.8/
→˓site-packages (from kfp~=1.8.0->mlrun) (0.9.1)
Requirement already satisfied: strip-hints<1,>=0.1.8 in /opt/conda/lib/python3.8/site-
→˓packages (from kfp~=1.8.0->mlrun) (0.1.10)
Requirement already satisfied: uritemplate<4,>=3.0.1 in /opt/conda/lib/python3.8/site-
→˓packages (from kfp~=1.8.0->mlrun) (3.0.1)
Requirement already satisfied: absl-py<2,>=0.9 in /opt/conda/lib/python3.8/site-packages␣
→˓(from kfp~=1.8.0->mlrun) (1.2.0)
Requirement already satisfied: google-cloud-storage<2,>=1.20.0 in /opt/conda/lib/python3.
→˓8/site-packages (from kfp~=1.8.0->mlrun) (1.44.0)
Requirement already satisfied: google-auth<2,>=1.6.1 in /opt/conda/lib/python3.8/site-
→˓packages (from kfp~=1.8.0->mlrun) (1.35.0)
Requirement already satisfied: google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>
→˓=1.31.5 in /opt/conda/lib/python3.8/site-packages (from kfp~=1.8.0->mlrun) (2.8.2)
Requirement already satisfied: Deprecated<2,>=1.2.7 in /opt/conda/lib/python3.8/site-
→˓packages (from kfp~=1.8.0->mlrun) (1.2.13)
Requirement already satisfied: kfp-server-api<2.0.0,>=1.1.2 in /opt/conda/lib/python3.8/
→˓site-packages (from kfp~=1.8.0->mlrun) (1.8.4)
Requirement already satisfied: protobuf<4,>=3.13.0 in /opt/conda/lib/python3.8/site-
→˓packages (from kfp~=1.8.0->mlrun) (3.19.4)
Requirement already satisfied: requests-oauthlib in /opt/conda/lib/python3.8/site-
→˓packages (from kubernetes~=12.0->mlrun) (1.3.1)
Requirement already satisfied: certifi>=14.05.14 in /opt/conda/lib/python3.8/site-
→˓packages (from kubernetes~=12.0->mlrun) (2020.12.5)
Requirement already satisfied: websocket-client!=0.40.0,!=0.41.*,!=0.42.*,>=0.32.0 in /
→˓opt/conda/lib/python3.8/site-packages (from kubernetes~=12.0->mlrun) (1.3.3)
Requirement already satisfied: notebook>=5.2.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from nuclio-jupyter~=0.9.1->mlrun) (6.4.12)
Requirement already satisfied: boto3>=1.9 in /opt/conda/lib/python3.8/site-packages␣
→˓(from nuclio-jupyter~=0.9.1->mlrun) (1.17.106)
Requirement already satisfied: nbconvert>=5.4 in /opt/conda/lib/python3.8/site-packages␣
→˓(from nuclio-jupyter~=0.9.1->mlrun) (6.5.3)
Requirement already satisfied: pytz>=2017.3 in /opt/conda/lib/python3.8/site-packages␣
→˓(from pandas~=1.2->mlrun) (2021.1)
Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.8/site-packages␣
→˓(from requests~=2.22->mlrun) (2.10)
Requirement already satisfied: greenlet!=0.4.17 in /opt/conda/lib/python3.8/site-
→˓packages (from sqlalchemy~=1.3->mlrun) (1.0.0)
Requirement already satisfied: grpcio-tools<1.42,>1.34.0 in /opt/conda/lib/python3.8/
→˓site-packages (from storey~=1.1.7->mlrun) (1.41.1)
Requirement already satisfied: grpcio<1.42,>1.34.0 in /opt/conda/lib/python3.8/site-
→˓packages (from storey~=1.1.7->mlrun) (1.41.1)
Requirement already satisfied: future>=0.18.2 in /opt/conda/lib/python3.8/site-packages␣
→˓(from v3io~=0.5.13->mlrun) (0.18.2)
Requirement already satisfied: ujson>=3.0.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from v3io~=0.5.13->mlrun) (5.4.0)
Requirement already satisfied: googleapis-common-protos>=1.5.3 in /opt/conda/lib/python3.
→˓8/site-packages (from v3io-frames~=0.10.2->mlrun) (1.56.4)
Requirement already satisfied: s3transfer<0.5.0,>=0.4.0 in /opt/conda/lib/python3.8/site-
→˓packages (from boto3>=1.9->nuclio-jupyter~=0.9.1->mlrun) (0.4.2)
Requirement already satisfied: botocore<1.21.0,>=1.20.106 in /opt/conda/lib/python3.8/
→˓site-packages (from boto3>=1.9->nuclio-jupyter~=0.9.1->mlrun) (1.20.106)
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Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /opt/conda/lib/python3.8/site-
→˓packages (from boto3>=1.9->nuclio-jupyter~=0.9.1->mlrun) (0.10.0)
Requirement already satisfied: pycparser in /opt/conda/lib/python3.8/site-packages (from␣
→˓cffi>=1.12->cryptography<3.4,~=3.0->mlrun) (2.20)
Requirement already satisfied: wrapt<2,>=1.10 in /opt/conda/lib/python3.8/site-packages␣
→˓(from Deprecated<2,>=1.2.7->kfp~=1.8.0->mlrun) (1.14.1)
Requirement already satisfied: termcolor in /opt/conda/lib/python3.8/site-packages (from␣
→˓fire<1,>=0.3.1->kfp~=1.8.0->mlrun) (1.1.0)
Requirement already satisfied: smmap<6,>=3.0.1 in /opt/conda/lib/python3.8/site-packages␣
→˓(from gitdb<5,>=4.0.1->GitPython~=3.0->mlrun) (5.0.0)
Requirement already satisfied: google-auth-httplib2>=0.0.3 in /opt/conda/lib/python3.8/
→˓site-packages (from google-api-python-client<2,>=1.7.8->kfp~=1.8.0->mlrun) (0.1.0)
Requirement already satisfied: httplib2<1dev,>=0.15.0 in /opt/conda/lib/python3.8/site-
→˓packages (from google-api-python-client<2,>=1.7.8->kfp~=1.8.0->mlrun) (0.20.4)
Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.8/site-
→˓packages (from google-auth<2,>=1.6.1->kfp~=1.8.0->mlrun) (0.2.8)
Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.8/site-
→˓packages (from google-auth<2,>=1.6.1->kfp~=1.8.0->mlrun) (4.2.4)
Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.8/site-packages␣
→˓(from google-auth<2,>=1.6.1->kfp~=1.8.0->mlrun) (4.9)
Requirement already satisfied: google-cloud-core<3.0dev,>=1.6.0 in /opt/conda/lib/
→˓python3.8/site-packages (from google-cloud-storage<2,>=1.20.0->kfp~=1.8.0->mlrun) (2.3.
→˓2)
Requirement already satisfied: google-resumable-media<3.0dev,>=1.3.0 in /opt/conda/lib/
→˓python3.8/site-packages (from google-cloud-storage<2,>=1.20.0->kfp~=1.8.0->mlrun) (2.3.
→˓3)
Requirement already satisfied: parso<0.9.0,>=0.8.0 in /opt/conda/lib/python3.8/site-
→˓packages (from jedi>=0.16->ipython~=7.0->mlrun) (0.8.2)
Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from jinja2->distributed~=2021.11.2->mlrun) (2.1.1)
Requirement already satisfied: pyrsistent>=0.14.0 in /opt/conda/lib/python3.8/site-
→˓packages (from jsonschema<4,>=3.0.1->kfp~=1.8.0->mlrun) (0.17.3)
Requirement already satisfied: defusedxml in /opt/conda/lib/python3.8/site-packages␣
→˓(from nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (0.7.1)
Requirement already satisfied: pandocfilters>=1.4.1 in /opt/conda/lib/python3.8/site-
→˓packages (from nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (1.4.2)
Requirement already satisfied: tinycss2 in /opt/conda/lib/python3.8/site-packages (from␣
→˓nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (1.1.1)
Requirement already satisfied: jupyter-core>=4.7 in /opt/conda/lib/python3.8/site-
→˓packages (from nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (4.7.1)
Requirement already satisfied: beautifulsoup4 in /opt/conda/lib/python3.8/site-packages␣
→˓(from nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (4.9.3)
Requirement already satisfied: mistune<2,>=0.8.1 in /opt/conda/lib/python3.8/site-
→˓packages (from nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (0.8.4)
Requirement already satisfied: entrypoints>=0.2.2 in /opt/conda/lib/python3.8/site-
→˓packages (from nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (0.3)
Requirement already satisfied: jupyterlab-pygments in /opt/conda/lib/python3.8/site-
→˓packages (from nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (0.1.2)
Requirement already satisfied: nbclient>=0.5.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (0.5.3)
Requirement already satisfied: bleach in /opt/conda/lib/python3.8/site-packages (from␣
→˓nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (3.3.0)

(continues on next page)
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Requirement already satisfied: nbformat>=5.1 in /opt/conda/lib/python3.8/site-packages␣
→˓(from nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (5.4.0)
Requirement already satisfied: lxml in /opt/conda/lib/python3.8/site-packages (from␣
→˓nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (4.9.1)
Requirement already satisfied: pyzmq>=17 in /opt/conda/lib/python3.8/site-packages (from␣
→˓notebook>=5.2.0->nuclio-jupyter~=0.9.1->mlrun) (22.0.3)
Requirement already satisfied: prometheus-client in /opt/conda/lib/python3.8/site-
→˓packages (from notebook>=5.2.0->nuclio-jupyter~=0.9.1->mlrun) (0.10.1)
Requirement already satisfied: ipykernel in /opt/conda/lib/python3.8/site-packages (from␣
→˓notebook>=5.2.0->nuclio-jupyter~=0.9.1->mlrun) (5.5.4)
Requirement already satisfied: terminado>=0.8.3 in /opt/conda/lib/python3.8/site-
→˓packages (from notebook>=5.2.0->nuclio-jupyter~=0.9.1->mlrun) (0.9.4)
Requirement already satisfied: Send2Trash>=1.8.0 in /opt/conda/lib/python3.8/site-
→˓packages (from notebook>=5.2.0->nuclio-jupyter~=0.9.1->mlrun) (1.8.0)
Requirement already satisfied: jupyter-client>=5.3.4 in /opt/conda/lib/python3.8/site-
→˓packages (from notebook>=5.2.0->nuclio-jupyter~=0.9.1->mlrun) (6.1.12)
Requirement already satisfied: ipython-genutils in /opt/conda/lib/python3.8/site-
→˓packages (from notebook>=5.2.0->nuclio-jupyter~=0.9.1->mlrun) (0.2.0)
Requirement already satisfied: argon2-cffi in /opt/conda/lib/python3.8/site-packages␣
→˓(from notebook>=5.2.0->nuclio-jupyter~=0.9.1->mlrun) (20.1.0)
Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.8/site-
→˓packages (from packaging>=20.0->dask~=2021.11.2->mlrun) (2.4.7)
Requirement already satisfied: locket in /opt/conda/lib/python3.8/site-packages (from␣
→˓partd>=0.3.10->dask~=2021.11.2->mlrun) (0.2.0)
Requirement already satisfied: ptyprocess>=0.5 in /opt/conda/lib/python3.8/site-packages␣
→˓(from pexpect>4.3->ipython~=7.0->mlrun) (0.7.0)
Requirement already satisfied: wcwidth in /opt/conda/lib/python3.8/site-packages (from␣
→˓prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython~=7.0->mlrun) (0.2.5)
Requirement already satisfied: wheel in /opt/conda/lib/python3.8/site-packages (from␣
→˓strip-hints<1,>=0.1.8->kfp~=1.8.0->mlrun) (0.36.2)
Requirement already satisfied: heapdict in /opt/conda/lib/python3.8/site-packages (from␣
→˓zict>=0.1.3->distributed~=2021.11.2->mlrun) (1.0.1)
Requirement already satisfied: oauthlib>=3.0.0 in /opt/conda/lib/python3.8/site-packages␣
→˓(from requests-oauthlib->kubernetes~=12.0->mlrun) (3.0.1)
Requirement already satisfied: sniffio>=1.1 in /opt/conda/lib/python3.8/site-packages␣
→˓(from anyio<5,>=3.4.0->starlette==0.19.1->fastapi~=0.78.0->mlrun) (1.2.0)
Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.8/
→˓site-packages (from google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage<2,>=1.
→˓20.0->kfp~=1.8.0->mlrun) (1.3.0)
Requirement already satisfied: async-generator in /opt/conda/lib/python3.8/site-packages␣
→˓(from nbclient>=0.5.0->nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (1.10)
Requirement already satisfied: fastjsonschema in /opt/conda/lib/python3.8/site-packages␣
→˓(from nbformat>=5.1->nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (2.16.1)
Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.8/site-
→˓packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.1->kfp~=1.8.0->mlrun) (0.4.8)
Requirement already satisfied: soupsieve>1.2 in /opt/conda/lib/python3.8/site-packages␣
→˓(from beautifulsoup4->nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (2.0.1)
Requirement already satisfied: webencodings in /opt/conda/lib/python3.8/site-packages␣
→˓(from bleach->nbconvert>=5.4->nuclio-jupyter~=0.9.1->mlrun) (0.5.1)
WARNING: You are using pip version 22.0.4; however, version 22.2.2 is available.
You should consider upgrading via the '/opt/conda/bin/python -m pip install --upgrade pip
→˓' command.

(continues on next page)
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Note: you may need to restart the kernel to use updated packages.

7.2.2 Define MLRun project and a training functions

You should create, load, or use (get) an MLRun Project that holds all your functions and assets.

Get or create a new project:

The get_or_create_project() method tries to load the project from MLRun DB. If the project does not exist it
creates a new one.

import mlrun
project = mlrun.get_or_create_project("tutorial", context="src/", user_project=True)

> 2022-08-24 08:50:23,251 [info] loaded project tutorial from None or context and saved␣
→˓in MLRun DB

Add (auto) MLOps to your training function:

Training functions generate models and various model statistics. You’ll want to store the models along with all the
relevant data, metadata, and measurements. MLRun can apply all the MLOps functionality automatically (“Auto-
MLOps”) by simply using the framework specific apply_mlrun() method.

In the training function below note the single custom line you need to add to your code:

apply_mlrun(model=model, model_name="my_model", x_test=x_test, y_test=y_test)

apply_mlrun() manages the training process and automatically logs all the framework-specific model object, de-
tails, data, metadata, and metrics. It accepts the model object and various optional parameters. When specifying the
x_test and y_test data it generates various plots and calculations to evaluate the model. Metadata and parameters
are automatically recorded (from MLRun context object) and don’t need to be specified.

Function code:

Run the following cell to generate the trainer.py file (or copy it manually):

Create a serverless function object from the code above, and register it in the project:

trainer = project.set_function("trainer.py", name="trainer", kind="job", image="mlrun/
→˓mlrun", handler="train")

7.2.3 Run the training function and log the artifacts and model

Create a dataset for training:

import pandas as pd
from sklearn.datasets import load_breast_cancer
breast_cancer = load_breast_cancer()
breast_cancer_dataset = pd.DataFrame(data=breast_cancer.data, columns=breast_cancer.
→˓feature_names)

(continues on next page)
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breast_cancer_labels = pd.DataFrame(data=breast_cancer.target, columns=["label"])
breast_cancer_dataset = pd.concat([breast_cancer_dataset, breast_cancer_labels], axis=1)

breast_cancer_dataset.to_csv("cancer-dataset.csv", index=False)

Run the function (locally) using the generated dataset:

trainer_run = project.run_function(
"trainer",
inputs={"dataset": "cancer-dataset.csv"},
params = {"n_estimators": 100, "learning_rate": 1e-1, "max_depth": 3},
local=True

)

> 2022-08-24 08:50:24,614 [warning] it is recommended to use k8s secret (specify secret_
→˓name), specifying the aws_access_key/aws_secret_key directly is unsafe
> 2022-08-24 08:50:24,636 [info] starting run trainer-train␣
→˓uid=05c6e41b668f460fa67d7abf9dff9542 DB=http://mlrun-api:8080

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2022-08-24 08:50:32,906 [info] run executed, status=completed

View the auto generated results and artifacts:

trainer_run.outputs

{'accuracy': 0.956140350877193,
'f1_score': 0.965034965034965,
'precision_score': 0.9583333333333334,
'recall_score': 0.971830985915493,
'feature-importance': 's3://mlrun/trainer-train/0/feature-importance.html',
'test_set': 'store://artifacts/tutorial-jovyan/trainer-train_test_
→˓set:05c6e41b668f460fa67d7abf9dff9542',
'confusion-matrix': 's3://mlrun/trainer-train/0/confusion-matrix.html',
'roc-curves': 's3://mlrun/trainer-train/0/roc-curves.html',
'calibration-curve': 's3://mlrun/trainer-train/0/calibration-curve.html',
'model': 'store://artifacts/tutorial-jovyan/cancer_
→˓classifier:05c6e41b668f460fa67d7abf9dff9542'}

trainer_run.artifact('feature-importance').show()

<IPython.core.display.HTML object>

Export model files + metadata into a zip: (require MLRun 1.1.0 and above)

You can export() the model package (files + metadata) into a zip, and load it on a remote system/cluster (by simply
running model = project.import_artifact(key, path)).
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trainer_run.artifact('model').meta.export("model.zip")

7.2.4 Hyper-parameter tuning and model/experiment comparison

Run a GridSearch with a couple of parameters, and select the best run with respect to the max accuracy. (Read
more about MLRun Hyper-Param and Iterative jobs.)

For basic usage you can run the hyperparameters tuning job by using the arguments:

• hyperparams for the hyperparameters options and values of choice.

• selector for specifying how to select the best model.

Running a remote function:

In order to run the hyper-param task over the cluster you need the input data to be available for the job, using object
storage or the mlrun versioned artifact store.

The following line logs (and uploads) the dataframe as a project artifact:

dataset_artifact = project.log_dataset("cancer-dataset", df=breast_cancer_dataset,␣
→˓index=False)

Run the function over the remote Kubernetes cluster (local is not set):

hp_tuning_run = project.run_function(
"trainer",
inputs={"dataset": dataset_artifact.uri},
hyperparams={

"n_estimators": [10, 100, 1000],
"learning_rate": [1e-1, 1e-3],
"max_depth": [2, 8]

},
selector="max.accuracy",

)

> 2022-08-24 08:50:34,657 [info] starting run trainer-train␣
→˓uid=22118ca5268e45babf7668ce11064837 DB=http://mlrun-api:8080
> 2022-08-24 08:50:35,094 [info] Job is running in the background, pod: trainer-train-
→˓8c6f4
> 2022-08-24 08:51:27,920 [info] best iteration=3, used criteria max.accuracy
> 2022-08-24 08:51:28,380 [info] run executed, status=completed
final state: completed

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2022-08-24 08:51:35,352 [info] run executed, status=completed
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View Hyper-param results and the selected run in the MLRun UI:

Interactive Parallel Coordinates Plot:

List the generated models and compare the different runs:

hp_tuning_run.outputs

{'best_iteration': 3,
'accuracy': 0.9649122807017544,
'f1_score': 0.9722222222222222,
'precision_score': 0.958904109589041,
'recall_score': 0.9859154929577465,
'feature-importance': 's3://mlrun/trainer-train/3/feature-importance.html',
'test_set': 'store://artifacts/tutorial-jovyan/trainer-train_test_
→˓set:22118ca5268e45babf7668ce11064837',

(continues on next page)
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'confusion-matrix': 's3://mlrun/trainer-train/3/confusion-matrix.html',
'roc-curves': 's3://mlrun/trainer-train/3/roc-curves.html',
'calibration-curve': 's3://mlrun/trainer-train/3/calibration-curve.html',
'model': 'store://artifacts/tutorial-jovyan/cancer_
→˓classifier:22118ca5268e45babf7668ce11064837',
'iteration_results': 's3://mlrun/trainer-train/0/iteration_results.csv',
'parallel_coordinates': 's3://mlrun/trainer-train/0/parallel_coordinates.html'}

# list the models in the project (can apply filters)
models = project.list_models()
for model in models:

print(f"uri: {model.uri}, metrics: {model.metrics}")

uri: store://models/tutorial-jovyan/cancer_classifier#0:05c6e41b668f460fa67d7abf9dff9542,
→˓ metrics: {'accuracy': 0.956140350877193, 'f1_score': 0.965034965034965, 'precision_
→˓score': 0.9583333333333334, 'recall_score': 0.971830985915493}
uri: store://models/tutorial-jovyan/cancer_classifier#1:22118ca5268e45babf7668ce11064837,
→˓ metrics: {'accuracy': 0.956140350877193, 'f1_score': 0.965034965034965, 'precision_
→˓score': 0.9583333333333334, 'recall_score': 0.971830985915493}
uri: store://models/tutorial-jovyan/cancer_classifier#2:22118ca5268e45babf7668ce11064837,
→˓ metrics: {'accuracy': 0.956140350877193, 'f1_score': 0.965034965034965, 'precision_
→˓score': 0.9583333333333334, 'recall_score': 0.971830985915493}
uri: store://models/tutorial-jovyan/cancer_classifier#3:22118ca5268e45babf7668ce11064837,
→˓ metrics: {'accuracy': 0.9649122807017544, 'f1_score': 0.9722222222222222, 'precision_
→˓score': 0.958904109589041, 'recall_score': 0.9859154929577465}
uri: store://models/tutorial-jovyan/cancer_classifier#4:22118ca5268e45babf7668ce11064837,
→˓ metrics: {'accuracy': 0.6228070175438597, 'f1_score': 0.7675675675675676, 'precision_
→˓score': 0.6228070175438597, 'recall_score': 1.0}
uri: store://models/tutorial-jovyan/cancer_classifier#5:22118ca5268e45babf7668ce11064837,
→˓ metrics: {'accuracy': 0.6228070175438597, 'f1_score': 0.7675675675675676, 'precision_
→˓score': 0.6228070175438597, 'recall_score': 1.0}
uri: store://models/tutorial-jovyan/cancer_classifier#6:22118ca5268e45babf7668ce11064837,
→˓ metrics: {'accuracy': 0.956140350877193, 'f1_score': 0.965034965034965, 'precision_
→˓score': 0.9583333333333334, 'recall_score': 0.971830985915493}
uri: store://models/tutorial-jovyan/cancer_classifier#7:22118ca5268e45babf7668ce11064837,
→˓ metrics: {'accuracy': 0.9385964912280702, 'f1_score': 0.951048951048951, 'precision_
→˓score': 0.9444444444444444, 'recall_score': 0.9577464788732394}
uri: store://models/tutorial-jovyan/cancer_classifier#8:22118ca5268e45babf7668ce11064837,
→˓ metrics: {'accuracy': 0.9385964912280702, 'f1_score': 0.951048951048951, 'precision_
→˓score': 0.9444444444444444, 'recall_score': 0.9577464788732394}
uri: store://models/tutorial-jovyan/cancer_classifier#9:22118ca5268e45babf7668ce11064837,
→˓ metrics: {'accuracy': 0.9385964912280702, 'f1_score': 0.951048951048951, 'precision_
→˓score': 0.9444444444444444, 'recall_score': 0.9577464788732394}
uri: store://models/tutorial-jovyan/cancer_classifier
→˓#10:22118ca5268e45babf7668ce11064837, metrics: {'accuracy': 0.6228070175438597, 'f1_
→˓score': 0.7675675675675676, 'precision_score': 0.6228070175438597, 'recall_score': 1.0}
uri: store://models/tutorial-jovyan/cancer_classifier
→˓#11:22118ca5268e45babf7668ce11064837, metrics: {'accuracy': 0.6228070175438597, 'f1_
→˓score': 0.7675675675675676, 'precision_score': 0.6228070175438597, 'recall_score': 1.0}
uri: store://models/tutorial-jovyan/cancer_classifier
→˓#12:22118ca5268e45babf7668ce11064837, metrics: {'accuracy': 0.9385964912280702, 'f1_
→˓score': 0.951048951048951, 'precision_score': 0.9444444444444444, 'recall_score': 0.
→˓9577464788732394}

(continues on next page)
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# to view the full model object use:
# print(models[0].to_yaml())

# compare the runs (generate interactive parallel coordinates plot and a table)
project.list_runs(name="trainer-train", iter=True).compare()

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

7.2.5 Build and test the model serving functions

MLRun serving can produce managed, real-time, serverless, pipelines composed of various data processing and ML
tasks. The pipelines use the Nuclio real-time serverless engine, which can be deployed anywhere. For more details and
examples, see the MLRun Serving Graphs.

Create a model serving function from our code

serving_fn = mlrun.new_function("serving", image="mlrun/mlrun", kind="serving")
serving_fn.add_model('cancer-classifier',model_path=hp_tuning_run.outputs["model"],␣
→˓class_name='mlrun.frameworks.sklearn.SklearnModelServer')

<mlrun.serving.states.TaskStep at 0x7ffb4eba6bb0>

# create a mock (simulator of the real-time function)
server = serving_fn.to_mock_server()

my_data = {"inputs"
:[[

1.371e+01, 2.083e+01, 9.020e+01, 5.779e+02, 1.189e-01, 1.645e-01,
9.366e-02, 5.985e-02, 2.196e-01, 7.451e-02, 5.835e-01, 1.377e+00,
3.856e+00, 5.096e+01, 8.805e-03, 3.029e-02, 2.488e-02, 1.448e-02,
1.486e-02, 5.412e-03, 1.706e+01, 2.814e+01, 1.106e+02, 8.970e+02,
1.654e-01, 3.682e-01, 2.678e-01, 1.556e-01, 3.196e-01, 1.151e-01]

]
}
server.test("/v2/models/cancer-classifier/infer", body=my_data)

> 2022-08-24 08:51:36,487 [warning] run command, file or code were not specified
> 2022-08-24 08:51:37,660 [info] model cancer-classifier was loaded
> 2022-08-24 08:51:37,661 [info] Loaded ['cancer-classifier']

/opt/conda/lib/python3.8/site-packages/sklearn/base.py:450: UserWarning:

X does not have valid feature names, but GradientBoostingClassifier was fitted with␣
→˓feature names
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{'id': 'ec127766ed0d4e229496a61e8790047e',
'model_name': 'cancer-classifier',
'outputs': [0]}

7.2.6 Done!

Congratulation! You’ve completed Part 2 of the MLRun getting-started tutorial. Proceed to Part 3: Model serving to
learn how to deploy and serve your model using a serverless function.

7.3 Serving ML/DL models

This notebook demonstrate how to serve standard ML/DL models using MLRun Serving.

Make sure you went over the basics in MLRun Quick Start Tutorial.

MLRun serving can produce managed real-time serverless pipelines from various tasks, including MLRun models
or standard model files. The pipelines use the Nuclio real-time serverless engine, which can be deployed anywhere.
Nuclio is a high-performance open-source “serverless” framework that’s focused on data, I/O, and compute-intensive
workloads.

MLRun serving supports advanced real-time data processing and model serving pipelines. For more details and exam-
ples, see the MLRun serving pipelines documentation.

Tutorial steps:

• Using pre-built MLRun serving classes and images

• Create and test the Serving Function

• Deploy the serving Function

• Build a custom serving class

• Building advanced model Serving Graph

7.3.1 MLRun installation and configuration

Before running this notebook make sure the mlrun package is installed (pip install mlrun) and that you have
configured the access to MLRun service.

# install MLRun if not installed, run this only once (restart the notebook after the␣
→˓install !!!)
# %pip install mlrun

Get or create a new project:

You should create, load or use (get) an MLRun Project. The get_or_create_project() method tries to load the
project from the MLRun DB. If the project does not exist it creates a new one.

import mlrun
project = mlrun.get_or_create_project("tutorial", context="src/", user_project=True)

> 2022-08-24 08:53:27,460 [info] loaded project tutorial from MLRun DB
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7.3.2 Using pre-built MLRun serving classes and images

MLRun contains built-in serving functionality for the major ML/DL frameworks (Scikit-Learn, TensorFlow.Keras,
ONNX, XGBoost, LightGBM and PyTorch). In addition MLRun provide a few container images with the required
ML/DL packages pre-installed.

You can overwrite the packages in the images, or provide your own image (just need to make sure that the mlrun
package is installed in it).

The following table specifies, for each framework, the relevant pre-integrated image and the corresponding MLRun
ModelServer serving class:

framework image serving class
SciKit-Learn mlrun/mlrun mlrun.frameworks.sklearn.SklearnModelServer
TensorFlow.Keras mlrun/ml-models mlrun.frameworks.tf_keras.TFKerasModelServer
ONNX mlrun/ml-models mlrun.frameworks.onnx.ONNXModelServer
XGBoost mlrun/ml-models mlrun.frameworks.xgboost.XGBoostModelServer
LightGBM mlrun/ml-models mlrun.frameworks.lgbm.LGBMModelServer
PyTorch mlrun/ml-models mlrun.frameworks.pytorch.PyTorchModelServer

For GPU support use the mlrun/ml-models-gpu image (adding GPU drivers and support)

Example using SKlearn and TF Keras models

See how to specify the parameters in the following two examples. These use standard pre-trained models (using the
iris dataset) stored in MLRun samples repository. (You can use your own models instead.)

models_dir = mlrun.get_sample_path('models/serving/')

framework = 'sklearn' # change to 'keras' to try the 2nd option
kwargs = {}
if framework == "sklearn":

serving_class = 'mlrun.frameworks.sklearn.SklearnModelServer'
model_path = models_dir + 'sklearn.pkl'
image = 'mlrun/mlrun'

else:
serving_class = 'mlrun.frameworks.tf_keras.TFKerasModelServer'
model_path = models_dir + 'keras.h5'
image = 'mlrun/ml-models' # or mlrun/ml-models-gpu when using GPUs
kwargs['labels'] = {'model-format': 'h5'}

Logging the model

The model and its metadata are first registered in MLRun’s Model Registry. Use the log_model() method to specify
the model files and metadata (metrics, schema, parameters, etc.).

model_object = project.log_model(f'{framework}-model', model_file=model_path, **kwargs)
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7.3.3 Create and test the serving function

Create a new serving function, specify its name and the correct image (with your desired framework).

If you want to add specific packages to the base image, specify the requirements attribute, example:

serving_fn = mlrun.new_function("serving", image=image, kind="serving",␣
→˓requirements=["tensorflow==2.8.1"])

The following example uses a basic topology of a model router and adds a single model behind it (you can add
multiple models to the same function)

serving_fn = mlrun.new_function("serving", image=image, kind="serving", requirements={})
serving_fn.add_model(framework ,model_path=model_object.uri, class_name=serving_class,␣
→˓to_list=True)

# Plot the serving topology input -> router -> model
serving_fn.plot(rankdir="LR")

<graphviz.dot.Digraph at 0x7f05f5467f40>

Simulating the model server locally (using the mock_server):

# create a mock server that represents the serving pipeline
server = serving_fn.to_mock_server()

> 2022-08-24 08:53:27,726 [warning] run command, file or code were not specified
> 2022-08-24 08:53:32,250 [info] model sklearn was loaded
> 2022-08-24 08:53:32,252 [info] Loaded ['sklearn']

Trying to unpickle estimator DecisionTreeClassifier from version 0.23.2 when using␣
→˓version 1.0.2. This might lead to breaking code or invalid results. Use at your own␣
→˓risk. For more info please refer to:
https://scikit-learn.org/stable/modules/model_persistence.html#security-maintainability-
→˓limitations
Trying to unpickle estimator RandomForestClassifier from version 0.23.2 when using␣
→˓version 1.0.2. This might lead to breaking code or invalid results. Use at your own␣
→˓risk. For more info please refer to:
https://scikit-learn.org/stable/modules/model_persistence.html#security-maintainability-
→˓limitations

Test the mock model server endpoint:

• List the served models

server.test("/v2/models/", method="GET")

{'models': ['sklearn']}

• Infer using test data

sample = {"inputs":[[5.1, 3.5, 1.4, 0.2],[7.7, 3.8, 6.7, 2.2]]}
server.test(path=f'/v2/models/{framework}/infer',body=sample)
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{'id': '28bab37fdc0a4ec19e446191894f9f6c',
'model_name': 'sklearn',
'outputs': [0, 2]}

See more API options and parameters in the Model serving API documentation.

7.3.4 Deploy the serving function

Deploy the serving function and use invoke to test it with the provided sample.

serving_fn.with_code(body=" ") # adds the serving wrapper, not required with MLRun >= 1.
→˓0.3
project.deploy_function(serving_fn)

> 2022-08-24 08:53:32,334 [warning] it is recommended to use k8s secret (specify secret_
→˓name), specifying the aws_access_key/aws_secret_key directly is unsafe
> 2022-08-24 08:53:32,343 [info] Starting remote function deploy
2022-08-24 08:53:32 (info) Deploying function
2022-08-24 08:53:32 (info) Building
2022-08-24 08:53:32 (info) Staging files and preparing base images
2022-08-24 08:53:32 (info) Building processor image
2022-08-24 08:57:27 (info) Build complete
2022-08-24 08:57:48 (info) Function deploy complete
> 2022-08-24 08:57:49,042 [info] successfully deployed function: {'internal_invocation_
→˓urls': ['nuclio-tutorial-jovyan-serving.mlrun.svc.cluster.local:8080'], 'external_
→˓invocation_urls': ['localhost:32129']}

DeployStatus(state=ready, outputs={'endpoint': 'http://localhost:32129', 'name':
→˓'tutorial-jovyan-serving'})

serving_fn.invoke(path=f'/v2/models/{framework}/infer',body=sample)

> 2022-08-24 08:57:49,138 [info] invoking function: {'method': 'POST', 'path': 'http://
→˓nuclio-tutorial-jovyan-serving.mlrun.svc.cluster.local:8080/v2/models/sklearn/infer'}

{'id': '40325ba7-3f1f-461c-9aa1-4fc66b2e196e',
'model_name': 'sklearn',
'outputs': [0, 2]}
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7.3.5 Building a custom serving class

Model serving classes implement the full model serving functionality, which include loading models, pre- and post-
processing, prediction, explainability, and model monitoring.

Model serving classes must inherit from mlrun.serving.V2ModelServer, and at the minimum implement the
load() (download the model file(s) and load the model into memory) and predict() (accept request payload and
return prediction/inference results) methods.

For more detailed information on custom serving classes, see Creating a custom model serving class.

The following code demonstrates a minimal scikit-learn (a.k.a. sklearn) serving-class implementation:

from cloudpickle import load
import numpy as np
from typing import List
import mlrun

class ClassifierModel(mlrun.serving.V2ModelServer):
def load(self):

"""load and initialize the model and/or other elements"""
model_file, extra_data = self.get_model('.pkl')
self.model = load(open(model_file, 'rb'))

def predict(self, body: dict) -> List:
"""Generate model predictions from sample."""
feats = np.asarray(body['inputs'])
result: np.ndarray = self.model.predict(feats)
return result.tolist()

In order to create a function that incorporates the code of the new class (in serving.py ) use code_to_function:

serving_fn = mlrun.code_to_function('serving', filename='serving.py', kind='serving',
→˓image='mlrun/mlrun')
serving_fn.add_model('my_model',model_path=model_file, class_name='ClassifierModel')

7.3.6 Building an advanced model serving graph

MLRun graphs enable building and running DAGs (directed acyclic graph). Graphs are composed of individual steps.
The first graph element accepts an Event object, transforms/processes the event and passes the result to the next step
in the graph, and so on. The final result can be written out to a destination (file, DB, stream, etc.) or returned back to
the caller (one of the graph steps can be marked with .respond()).

The serving graphs can be composed of pre-defined graph steps, block-type elements (model servers, routers, en-
sembles, data readers and writers, data engineering tasks, validators, etc.), custom steps, or from native python
classes/functions. A graph can have data processing steps, model ensembles, model servers, post-processing, etc.
Graphs can auto-scale and span multiple function containers (connected through streaming protocols).

See the Advanced Model Serving Graph Notebook Example.
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7.3.7 Done!

Congratulations! You’ve completed Part 3 of the MLRun getting-started tutorial. Proceed to Part 4: ML Pipeline to
learn how to create an automated pipeline for your project.

7.4 Projects and automated ML pipeline

This notebook demonstrate how to work with projects, source control (git), and automating the ML pipeline.

Make sure you went over the basics in MLRun quick-start-tutor.

MLRun Project is a container for all your work on a particular activity: all the associated code, functions, Jobs, work-
flows, data, models and Artifacts. Projects can be mapped to git repositories to enable versioning, collaboration, and
CI/CD.

You can create project definitions using the SDK or a yaml file and store those in MLRun DB, file, or archive. Once the
project is loaded you can run jobs/workflows which refer to any project element by name, allowing separation between
configuration and code. See Create and load projects for details.

Projects contain workflows that execute the registered functions in a sequence/graph (DAG), and which can reference
project parameters, secrets and artifacts by name. MLRun currently supports two workflow engines, local (for simple
tasks) and Kubeflow Pipelines (for more complex/advanced tasks). MLRun also supports a real-time workflow engine
(see Real-time serving pipelines (graphs)).

An ML Engineer can gather the different functions created by the Data Engineer and Data Scientist and create this
automated pipeline.

Tutorial steps:

• Setup the project and functions

• Working with GIT and archives

• Build and run automated ML pipelines and CI/CD

• Test the deployed model endpoint

7.4.1 MLRun installation and configuration

Before running this notebook make sure the mlrun package is installed (pip install mlrun) and that you have
configured the access to MLRun service.

# install MLRun if not installed, run this only once (restart the notebook after the␣
→˓install !!!)
# %pip install mlrun

7.4. Projects and automated ML pipeline 69

04-pipeline.ipynb
../projects/create-load-import-project.html
https://www.kubeflow.org/docs/pipelines/pipelines-quickstart/


mlrun, Release UNKNOWN

7.4.2 Setup the project and functions

Get or create a project:

There are three ways to create/load {ref}MLRun projects <Projects>:

• mlrun.projects.new_project() — Create a new MLRun project and optionally load it from a yaml/zip/git
template.

• mlrun.projects.load_project() — Load a project from a context directory or remote git/zip/tar archive.

• mlrun.projects.get_or_create_project() — Load a project from the MLRun DB if it exists, or from a
specified context/archive.

Projects refer to a context directory that holds all the project code and configuration. The context dir is usually
mapped to a git repository and/or to an IDE (PyCharm, VSCode, etc.) project.

import mlrun
project = mlrun.get_or_create_project("tutorial", context="src/", user_project=True)

> 2022-08-24 08:59:21,761 [info] loaded project tutorial from None or context and saved␣
→˓in MLRun DB

Register project functions

To run workflows, you must save the definitions for the functions in the project so function objects will be initialized
automatically when you load a project or when running a project version in automated CI/CD workflows. In addition,
you might want to set/register other project attributes such as global parameters, secrets, and data.

Functions are registered using the set_function() command, where you can specify the code, requirements, image,
etc. Functions can be created from a single code/notebook file or have access to the entire project context directory (by
adding the with_repo=True flag, it will guarantee the project context is cloned into the function runtime environment).

Function registration examples:

# example: register a notebook file as a function
project.set_function('mynb.ipynb', name='test-function', image="mlrun/mlrun",␣

→˓handler="run_test")

# define a job (batch) function which uses code/libs from the project repo
project.set_function(

name="myjob", handler="my_module.job_handler",
image="mlrun/mlrun", kind="job", with_repo=True,

)

Function code can be found here

Register the function above in the project:

project.set_function("gen_breast_cancer.py", name="get-data", kind="job", image="mlrun/
→˓mlrun", handler="breast_cancer_generator")

<mlrun.runtimes.kubejob.KubejobRuntime at 0x7fc278e12340>
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Register additional project objects and metadata:

You can define other objects (workflows, artifacts, secrets) and parameters in the project and use them in your functions,
for example:

# register a simple named artifact in the project (to be used in workflows)
data_url = 'https://s3.wasabisys.com/iguazio/data/iris/iris.data.raw.csv'
project.set_artifact('data', target_path=data_url)

# add a multi-stage workflow (./workflow.py) to the project with the name 'main' and␣
→˓save the project

project.set_workflow('main', "./workflow.py")

# read env vars from dict or file and set as project secrets
project.set_secrets({"SECRET1": "value"})
project.set_secrets(file_path="secrets.env")

project.spec.params = {"x": 5}

Save the project:

# save the project in the db (and into the project.yaml file)
project.save()

<mlrun.projects.project.MlrunProject at 0x7fc278e18880>

When you save the project it stores the project definitions in the project.yaml, this allows reconstructing the project
in a remote cluster or a CI/CD system.

See the generated project file: project.yaml.

7.4.3 Working with GIT and archives

Push the project code/metadata into an Archive

Use standard Git commands to push the current project tree into a git archive, make sure you .save() the project
before pushing it

git remote add origin <server>
git commit -m "Commit message"
git push origin master

Alternatively you can use MLRun SDK calls:

• project.create_remote(git_uri, branch=branch) - to register the remote Git path

• project.push() - save project state and commit/push updates to remote git repo

you can also save the project content and metadata into a local or remote .zip archive, examples:

project.export("../archive1.zip")
project.export("s3://my-bucket/archive1.zip")
project.export(f"v3io://projects/{project.name}/archive1.zip")
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Load a project from local/remote archive

The project metadata and context (code and configuration) can be loaded and initialized using the load_project()
method. when url (of the git/zip/tar) is specified it clones a remote repo into the local context dir.

# load the project and run the 'main' workflow
project = load_project(context="./", name="myproj", url="git://github.com/mlrun/project-
→˓archive.git")
project.run("main", arguments={'data': data_url})

Projects can also be loaded and executed using the CLI:

mlrun project -n myproj -u "git://github.com/mlrun/project-archive.git" .
mlrun project -r main -w -a data=<data-url> .

# load the project in the current context dir
project = mlrun.load_project("src/")

7.4.4 Build and run automated ML pipelines and CI/CD

A pipeline is created by running an MLRun “workflow”. The following code defines a workflow. The workflow
describes a directed acyclic graph (DAG) which is executed using the local, remote, or kubeflow engines.

See Workflows. The defined pipeline includes the following steps:

• Generate/prepare the data (ingest).

• Train and the model (train).

• Deploy the model as a real-time serverless function (serving).

Note: A pipeline can also include continuous build integration and deployment (CI/CD) steps, such as
building container images and deploying models.

Run the workflow:

# run the workflow
run_id = project.run(

workflow_path="workflow.py",
arguments={"model_name": "cancer-classifier"},
watch=True)

<IPython.core.display.HTML object>

<graphviz.dot.Digraph at 0x7fc239b9b9d0>

<IPython.core.display.HTML object>

View the pipeline in MLRun UI:
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Run workflows using the CLI:

With MLRun you can use a single command to load the code from local dir or remote archive (Git, zip, . . . ) and execute
a pipeline. This can be very useful for integration with CI/CD frameworks and practices. See CI/CD, rolling upgrades,
git for more details.

The following command loads the project from the current dir (.) and executes the workflow with an argument, for
running locally (without k8s).

mlrun project -r ./workflow.py -w -a model_name=classifier2 .!mlrun project -r ./
→˓workflow.py -w -a model_name=classifier2 .

7.4.5 Test the deployed model endpoint

Now that your model is deployed using the pipeline, you can invoke it as usual:

serving_fn = project.get_function("serving")

# create a mock (simulator of the real-time function)
my_data = {"inputs"

:[[
1.371e+01, 2.083e+01, 9.020e+01, 5.779e+02, 1.189e-01, 1.645e-01,
9.366e-02, 5.985e-02, 2.196e-01, 7.451e-02, 5.835e-01, 1.377e+00,
3.856e+00, 5.096e+01, 8.805e-03, 3.029e-02, 2.488e-02, 1.448e-02,
1.486e-02, 5.412e-03, 1.706e+01, 2.814e+01, 1.106e+02, 8.970e+02,
1.654e-01, 3.682e-01, 2.678e-01, 1.556e-01, 3.196e-01, 1.151e-01]

]
}
serving_fn.invoke("/v2/models/cancer-classifier/infer", body=my_data)
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> 2022-08-24 09:06:42,914 [info] invoking function: {'method': 'POST', 'path': 'http://
→˓nuclio-tutorial-jovyan-serving.mlrun.svc.cluster.local:8080/v2/models/cancer-
→˓classifier/infer'}

{'id': '9558b3a9-30c0-49e5-a55a-d5defd8d38e8',
'model_name': 'cancer-classifier',
'outputs': [0]}

7.4.6 Done!

Congratulations! You’ve completed the getting started tutorial.

You might also want to explore the following demos:

• For an example of distributed training pipeline using TensorFlow, Keras, and PyTorch, see the mask detection
demo.

• To learn more about deploying live endpoints and concept drift, see the network-operations (NetOps) demo.

• To learn about using the feature store to process raw transactions and events in real-time and respond and block
transactions before they occur, see the Fraud prevention demo.

• For an example of a pipeline that summarizes and extracts keywords from a news article URL, see the News
article summarization and keyword extraction via NLP.

7.5 How to Apply MLRun on Existing Code?

In this tutorial we will showcase how easy it is to apply MLRun on your existing code. With only 7 lines of code, you
will get:

• Experiment tracking - Track every single run of your experiment to learn what yielded the best results.

• Automatic Logging - Log datasets, metrics results and plots with one line of code. MLRun will take care for all
the rest.

• Parameterization - Enable running your code with different parameters, run hyperparameters tuning and get the
most out of your code.

• Resource management - Control the amount of resources available for your experiment.

We will use this kaggle code by Sylas as an example, part of the competition New York City Taxi Fare Prediction.

7.5.1 1. Get the Data

You may download the original data from kaggle, but as it is 5.7GB in size, we sampled it for demonstration purposes.
To check our sampled data, you may download it from here: training set, testing set

Keep in mind that because we will use MLRun’s DataItem to pass the datasets, it will be downloaded automatically,
so download them only if you wish to look inside.
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7.5.2 2. Code Review

We will use the original code with the most minimum changes required to apply MLRun to it. The code itself is stragiht
forward:

1. Read the training data and perform feature engineering on it to preprocess it for training.

2. Train a LightGBM regression model using LightGBM’s train function.

3. Read the testing data and save the contest expected submission file.

You can Download the script.py file, or copy paste it from here:

Show code

import gc

import lightgbm as lgbm
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split

# [MLRun] Import MLRun:
import mlrun
from mlrun.frameworks.lgbm import apply_mlrun

# [MLRun] Get MLRun's context:
context = mlrun.get_or_create_ctx("apply-mlrun-tutorial")

# [MLRun] Reading train data from context instead of local file:
train_df = context.get_input("train_set", "./train.csv").as_df()
# train_df = pd.read_csv('./train.csv')

# Drop rows with null values
train_df = train_df.dropna(how="any", axis="rows")

def clean_df(df):
return df[

(df.fare_amount > 0)
& (df.fare_amount <= 500)
&
# (df.passenger_count >= 0) & (df.passenger_count <= 8) &
(

(df.pickup_longitude != 0)
& (df.pickup_latitude != 0)
& (df.dropoff_longitude != 0)
& (df.dropoff_latitude != 0)

)
]

train_df = clean_df(train_df)

(continues on next page)
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(continued from previous page)

# To Compute Haversine distance
def sphere_dist(pickup_lat, pickup_lon, dropoff_lat, dropoff_lon):

"""
Return distance along great radius between pickup and dropoff coordinates.
"""
# Define earth radius (km)
R_earth = 6371
# Convert degrees to radians
pickup_lat, pickup_lon, dropoff_lat, dropoff_lon = map(

np.radians, [pickup_lat, pickup_lon, dropoff_lat, dropoff_lon]
)
# Compute distances along lat, lon dimensions
dlat = dropoff_lat - pickup_lat
dlon = dropoff_lon - pickup_lon

# Compute haversine distance
a = (

np.sin(dlat / 2.0) ** 2
+ np.cos(pickup_lat) * np.cos(dropoff_lat) * np.sin(dlon / 2.0) ** 2

)
return 2 * R_earth * np.arcsin(np.sqrt(a))

def sphere_dist_bear(pickup_lat, pickup_lon, dropoff_lat, dropoff_lon):
"""
Return distance along great radius between pickup and dropoff coordinates.
"""
# Convert degrees to radians
pickup_lat, pickup_lon, dropoff_lat, dropoff_lon = map(

np.radians, [pickup_lat, pickup_lon, dropoff_lat, dropoff_lon]
)
# Compute distances along lat, lon dimensions
dlon = pickup_lon - dropoff_lon

# Compute bearing distance
a = np.arctan2(

np.sin(dlon * np.cos(dropoff_lat)),
np.cos(pickup_lat) * np.sin(dropoff_lat)
- np.sin(pickup_lat) * np.cos(dropoff_lat) * np.cos(dlon),

)
return a

def radian_conv(degree):
"""
Return radian.
"""
return np.radians(degree)

def add_airport_dist(dataset):

(continues on next page)
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(continued from previous page)

"""
Return minumum distance from pickup or dropoff coordinates to each airport.
JFK: John F. Kennedy International Airport
EWR: Newark Liberty International Airport
LGA: LaGuardia Airport
SOL: Statue of Liberty
NYC: Newyork Central
"""
jfk_coord = (40.639722, -73.778889)
ewr_coord = (40.6925, -74.168611)
lga_coord = (40.77725, -73.872611)
sol_coord = (40.6892, -74.0445) # Statue of Liberty
nyc_coord = (40.7141667, -74.0063889)

pickup_lat = dataset["pickup_latitude"]
dropoff_lat = dataset["dropoff_latitude"]
pickup_lon = dataset["pickup_longitude"]
dropoff_lon = dataset["dropoff_longitude"]

pickup_jfk = sphere_dist(pickup_lat, pickup_lon, jfk_coord[0], jfk_coord[1])
dropoff_jfk = sphere_dist(jfk_coord[0], jfk_coord[1], dropoff_lat, dropoff_lon)
pickup_ewr = sphere_dist(pickup_lat, pickup_lon, ewr_coord[0], ewr_coord[1])
dropoff_ewr = sphere_dist(ewr_coord[0], ewr_coord[1], dropoff_lat, dropoff_lon)
pickup_lga = sphere_dist(pickup_lat, pickup_lon, lga_coord[0], lga_coord[1])
dropoff_lga = sphere_dist(lga_coord[0], lga_coord[1], dropoff_lat, dropoff_lon)
pickup_sol = sphere_dist(pickup_lat, pickup_lon, sol_coord[0], sol_coord[1])
dropoff_sol = sphere_dist(sol_coord[0], sol_coord[1], dropoff_lat, dropoff_lon)
pickup_nyc = sphere_dist(pickup_lat, pickup_lon, nyc_coord[0], nyc_coord[1])
dropoff_nyc = sphere_dist(nyc_coord[0], nyc_coord[1], dropoff_lat, dropoff_lon)

dataset["jfk_dist"] = pickup_jfk + dropoff_jfk
dataset["ewr_dist"] = pickup_ewr + dropoff_ewr
dataset["lga_dist"] = pickup_lga + dropoff_lga
dataset["sol_dist"] = pickup_sol + dropoff_sol
dataset["nyc_dist"] = pickup_nyc + dropoff_nyc

return dataset

def add_datetime_info(dataset):
# Convert to datetime format
dataset["pickup_datetime"] = pd.to_datetime(

dataset["pickup_datetime"], format="%Y-%m-%d %H:%M:%S UTC"
)

dataset["hour"] = dataset.pickup_datetime.dt.hour
dataset["day"] = dataset.pickup_datetime.dt.day
dataset["month"] = dataset.pickup_datetime.dt.month
dataset["weekday"] = dataset.pickup_datetime.dt.weekday
dataset["year"] = dataset.pickup_datetime.dt.year

return dataset

(continues on next page)

7.5. How to Apply MLRun on Existing Code? 77



mlrun, Release UNKNOWN

(continued from previous page)

train_df = add_datetime_info(train_df)
train_df = add_airport_dist(train_df)
train_df["distance"] = sphere_dist(

train_df["pickup_latitude"],
train_df["pickup_longitude"],
train_df["dropoff_latitude"],
train_df["dropoff_longitude"],

)

train_df["bearing"] = sphere_dist_bear(
train_df["pickup_latitude"],
train_df["pickup_longitude"],
train_df["dropoff_latitude"],
train_df["dropoff_longitude"],

)
train_df["pickup_latitude"] = radian_conv(train_df["pickup_latitude"])
train_df["pickup_longitude"] = radian_conv(train_df["pickup_longitude"])
train_df["dropoff_latitude"] = radian_conv(train_df["dropoff_latitude"])
train_df["dropoff_longitude"] = radian_conv(train_df["dropoff_longitude"])

train_df.drop(columns=["key", "pickup_datetime"], inplace=True)

y = train_df["fare_amount"]
train_df = train_df.drop(columns=["fare_amount"])

print(train_df.head())

x_train, x_test, y_train, y_test = train_test_split(
train_df, y, random_state=123, test_size=0.10

)

del train_df
del y
gc.collect()

params = {
"boosting_type": "gbdt",
"objective": "regression",
"nthread": 4,
"num_leaves": 31,
"learning_rate": 0.05,
"max_depth": -1,
"subsample": 0.8,
"bagging_fraction": 1,
"max_bin": 5000,
"bagging_freq": 20,
"colsample_bytree": 0.6,
"metric": "rmse",

(continues on next page)
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"min_split_gain": 0.5,
"min_child_weight": 1,
"min_child_samples": 10,
"scale_pos_weight": 1,
"zero_as_missing": True,
"seed": 0,
"num_rounds": 50000,

}

train_set = lgbm.Dataset(
x_train,
y_train,
silent=False,
categorical_feature=["year", "month", "day", "weekday"],

)
valid_set = lgbm.Dataset(

x_test,
y_test,
silent=False,
categorical_feature=["year", "month", "day", "weekday"],

)

# [MLRun] Apply MLRun on the LightGBM module:
apply_mlrun(context=context)

model = lgbm.train(
params,
train_set=train_set,
num_boost_round=10000,
early_stopping_rounds=500,
valid_sets=[valid_set],

)
del x_train
del y_train
del x_test
del y_test
gc.collect()

# [MLRun] Reading test data from context instead of local file:
test_df = context.get_input("test_set", "./test.csv").as_df()
# test_df = pd.read_csv('./test.csv')
print(test_df.head())
test_df = add_datetime_info(test_df)
test_df = add_airport_dist(test_df)
test_df["distance"] = sphere_dist(

test_df["pickup_latitude"],
test_df["pickup_longitude"],
test_df["dropoff_latitude"],
test_df["dropoff_longitude"],

)

test_df["bearing"] = sphere_dist_bear(

(continues on next page)
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test_df["pickup_latitude"],
test_df["pickup_longitude"],
test_df["dropoff_latitude"],
test_df["dropoff_longitude"],

)
test_df["pickup_latitude"] = radian_conv(test_df["pickup_latitude"])
test_df["pickup_longitude"] = radian_conv(test_df["pickup_longitude"])
test_df["dropoff_latitude"] = radian_conv(test_df["dropoff_latitude"])
test_df["dropoff_longitude"] = radian_conv(test_df["dropoff_longitude"])

test_key = test_df["key"]
test_df = test_df.drop(columns=["key", "pickup_datetime"])

# Predict from test set
prediction = model.predict(test_df, num_iteration=model.best_iteration)
submission = pd.DataFrame({"key": test_key, "fare_amount": prediction})

# [MLRun] Log the submission instead of saving it locally:
context.log_dataset(key="taxi_fare_submission", df=submission, format="csv")
# submission.to_csv('taxi_fare_submission.csv',index=False)

We will focus on reviewing the changes / additions made to the original code to apply MLRun on top of it. We added
/ replaced 7 lines of code you can see in the tabs below:

Initialization

Imports

On lines 9-10, we added 2 imports:

• mlrun - Import MLRun of course.

• apply_mlrun - We’ll use the apply_mlrun function from MLRun’s frameworks, a sub-package for common
ML/DL frameworks integrations with MLRun.

import mlrun
from mlrun.frameworks.lgbm import apply_mlrun

MLRun Context

To get parameters and inputs into the code, we need to get MLRun’s context. We can do so by using the function
get_or_create_ctx.

Line 13:

context = mlrun.get_or_create_ctx("apply-mlrun-tutorial")
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Get Training Set

In the original code the training set was read from local file. Now we wish to get it from the user who will run the code.
We’ll use the context to get the "training_set" input using the get_inputmethod. To not change the original logic,
we also included default path for when the training set was not provided by the user.

Line 16:

train_df = context.get_input("train_set", "./train.csv").as_df()
# Instead of: `train_df = pd.read_csv('./train.csv')`

Apply MLRun

We’ll now use the apply_mlrun function from MLRun’s LightGBM framework integration. MLRun will automati-
cally wrap the LightGBM module and enable automatic logging and evaluation.

Line 219:

apply_mlrun(context=context)

Logging the dataset

Similar to the way we got the training set, we will get the test dataset as an input from the MLRun conte

Line 235:

test_df = context.get_input("test_set", "./test.csv").as_df()
# Instead of: `test_df = pd.read_csv('./test.csv')`

Save the Submission

Finally, instead of saving the result locally, we will log the submission to MLRun.

Line 267:

context.log_dataset(key="taxi_fare_submission", df=submission, format="csv")
# Instead of: `submission.to_csv('taxi_fare_submission.csv',index=False)`

7.5.3 3. Run the Script with MLRun

We will now run the script and see MLRun in action.

import mlrun
import os
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3.1. Create a Project

We will create a project using the function get_or_create_project. To read more about MLRun projects, click
here

project = mlrun.get_or_create_project(name="apply-mlrun-tutorial", context="./", user_
→˓project=True)

> 2022-08-24 10:48:13,115 [info] loaded project apply-mlrun-tutorial from MLRun DB

3.2. Create a Function

We will create an MLRun function using the function code_to_function. To read more about MLRun functions,
click here

script_function = mlrun.code_to_function(
filename="./script.py",
name="apply-mlrun-tutorial-function",
kind="job",
image="mlrun/ml-models"

)
if not os.environ.get('MLRUN_CE'): # mount if not on community edition

script_function.apply(mlrun.platforms.auto_mount())

3.3. Run the Function

Now we can run the function, providing it with the inputs we desire. We will use the datasets links to send them over
to the function. MLRun will download and read them into pd.DataFrame automatically.

script_run = script_function.run(
inputs={

"train_set": "https://s3.us-east-1.wasabisys.com/iguazio/data/nyc-taxi/train.csv
→˓",

"test_set": "https://s3.us-east-1.wasabisys.com/iguazio/data/nyc-taxi/test.csv"
},

)

> 2022-08-24 10:48:13,211 [warning] it is recommended to use k8s secret (specify secret_
→˓name), specifying the aws_access_key/aws_secret_key directly is unsafe
> 2022-08-24 10:48:13,217 [info] starting run apply-mlrun-tutorial-function␣
→˓uid=89c26c07b12d40c2903fba400d3988c1 DB=http://mlrun-api:8080
> 2022-08-24 10:48:13,390 [info] Job is running in the background, pod: apply-mlrun-
→˓tutorial-function-nlv7d
> 2022-08-24 10:48:18,816 [info] handler was not provided running main (script.py)
> 2022-08-24 10:48:24,814 [info] logging run results to: http://mlrun-api:8080

pickup_longitude pickup_latitude ... distance bearing
0 -1.288826 0.710721 ... 1.030764 -2.918897
1 -1.291824 0.710546 ... 8.450134 -0.375217
2 -1.291242 0.711418 ... 1.389525 2.599961
3 -1.291319 0.710927 ... 2.799270 0.133905
4 -1.290987 0.711536 ... 1.999157 -0.502703
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[5 rows x 17 columns]
[LightGBM] [Warning] bagging_fraction is set=1, subsample=0.8 will be ignored. Current␣
→˓value: bagging_fraction=1
[LightGBM] [Warning] Met categorical feature which contains sparse values. Consider␣
→˓renumbering to consecutive integers started from zero
[LightGBM] [Warning] bagging_fraction is set=1, subsample=0.8 will be ignored. Current␣
→˓value: bagging_fraction=1
[LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was␣
→˓0.014498 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 55092
[LightGBM] [Info] Number of data points in the train set: 194071, number of used␣
→˓features: 17
[LightGBM] [Warning] bagging_fraction is set=1, subsample=0.8 will be ignored. Current␣
→˓value: bagging_fraction=1
[LightGBM] [Info] Start training from score 11.335573

key ... passenger_count
0 2015-01-27 13:08:24.0000002 ... 1
1 2015-01-27 13:08:24.0000003 ... 1
2 2011-10-08 11:53:44.0000002 ... 1
3 2012-12-01 21:12:12.0000002 ... 1
4 2012-12-01 21:12:12.0000003 ... 1

[5 rows x 7 columns]
> 2022-08-24 10:50:15,001 [info] run executed, status=completed
final state: completed

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2022-08-24 10:50:17,557 [info] run executed, status=completed

7.5.4 4. Review Outputs

We can see what outputs MLRun automatic logging and evaluation yielded by calling the outputs property on the run
object:

script_run.outputs

{'valid_0_rmse': 3.905279481685527,
'valid_0_rmse_plot': 's3://mlrun/apply-mlrun-tutorial-function/0/valid_0_rmse_plot.html
→˓',
'valid_0-feature-importance': 's3://mlrun/apply-mlrun-tutorial-function/0/valid_0-
→˓feature-importance.html',
'valid_0': 'store://artifacts/apply-mlrun-tutorial-jovyan/apply-mlrun-tutorial-function_
→˓valid_0:89c26c07b12d40c2903fba400d3988c1',

(continues on next page)
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'model': 'store://artifacts/apply-mlrun-tutorial-jovyan/
→˓model:89c26c07b12d40c2903fba400d3988c1',
'taxi_fare_submission': 'store://artifacts/apply-mlrun-tutorial-jovyan/apply-mlrun-
→˓tutorial-function_taxi_fare_submission:89c26c07b12d40c2903fba400d3988c1'}

MLRun automatically detects all the metrics calculated and collect the data along the training. Here there was one
validation set named valid_0 and the RMSE metric was calculated on it. You can see the RMSE values per iteration
plot and the final score including the features importance plot.

You can explore the different artifacts by calling the artifact function like so:

script_run.artifact('valid_0_rmse_plot').show()

<IPython.core.display.HTML object>

script_run.artifact('valid_0-feature-importance').show()

<IPython.core.display.HTML object>

And of course, you can see the submission that was logged as well:

script_run.artifact('taxi_fare_submission').show()

key fare_amount
0 2015-01-27 13:08:24.0000002 10.281408
1 2015-01-27 13:08:24.0000003 11.019641
2 2011-10-08 11:53:44.0000002 4.898061
3 2012-12-01 21:12:12.0000002 7.758042
4 2012-12-01 21:12:12.0000003 15.298775
... ... ...
9909 2015-05-10 12:37:51.0000002 9.117569
9910 2015-01-12 17:05:51.0000001 10.850885
9911 2015-04-19 20:44:15.0000001 55.048856
9912 2015-01-31 01:05:19.0000005 20.110280
9913 2015-01-18 14:06:23.0000006 7.081041

[9914 rows x 2 columns]

7.6 Feature store example (stocks)

This notebook demonstrates the following:

• Generate features and feature-sets

• Build complex transformations and ingest to offline and real-time data stores

• Fetch feature vectors for training

• Save feature vectors for re-use in real-time pipelines

• Access features and their statistics in real-time
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Note

By default, this demo works with the online feature store, which is currently not part of the Open Source MLRun default
deployment.

In this section

• Get started

• Create sample data for demo

• Define, infer and ingest feature sets

• Get an offline feature vector for training

• Initialize an online feature service and use it for real-time inference

7.6.1 Get started

Install the latest MLRun package and restart the notebook.

Setting up the environment and project:

import mlrun
mlrun.set_environment(project="stocks")

> 2021-05-23 09:04:04,507 [warning] Failed resolving version info. Ignoring and using␣
→˓defaults
> 2021-05-23 09:04:07,033 [warning] Unable to parse server or client version. Assuming␣
→˓compatible: {'server_version': '0.6.4-rc3', 'client_version': 'unstable'}

('stocks', 'v3io:///projects/{{run.project}}/artifacts')

7.6.2 Create sample data for demo

import pandas as pd
quotes = pd.DataFrame(

{
"time": [

pd.Timestamp("2016-05-25 13:30:00.023"),
pd.Timestamp("2016-05-25 13:30:00.023"),
pd.Timestamp("2016-05-25 13:30:00.030"),
pd.Timestamp("2016-05-25 13:30:00.041"),
pd.Timestamp("2016-05-25 13:30:00.048"),
pd.Timestamp("2016-05-25 13:30:00.049"),
pd.Timestamp("2016-05-25 13:30:00.072"),
pd.Timestamp("2016-05-25 13:30:00.075")

],
"ticker": [

"GOOG",
"MSFT",
"MSFT",

(continues on next page)
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"MSFT",
"GOOG",
"AAPL",
"GOOG",
"MSFT"

],
"bid": [720.50, 51.95, 51.97, 51.99, 720.50, 97.99, 720.50, 52.01],
"ask": [720.93, 51.96, 51.98, 52.00, 720.93, 98.01, 720.88, 52.03]

}
)

trades = pd.DataFrame(
{

"time": [
pd.Timestamp("2016-05-25 13:30:00.023"),
pd.Timestamp("2016-05-25 13:30:00.038"),
pd.Timestamp("2016-05-25 13:30:00.048"),
pd.Timestamp("2016-05-25 13:30:00.048"),
pd.Timestamp("2016-05-25 13:30:00.048")

],
"ticker": ["MSFT", "MSFT", "GOOG", "GOOG", "AAPL"],
"price": [51.95, 51.95, 720.77, 720.92, 98.0],
"quantity": [75, 155, 100, 100, 100]

}
)

stocks = pd.DataFrame(
{

"ticker": ["MSFT", "GOOG", "AAPL"],
"name": ["Microsoft Corporation", "Alphabet Inc", "Apple Inc"],
"exchange": ["NASDAQ", "NASDAQ", "NASDAQ"]

}
)

import datetime
def move_date(df, col):

max_date = df[col].max()
now_date = datetime.datetime.now()
delta = now_date - max_date
df[col] = df[col] + delta
return df

quotes = move_date(quotes, "time")
trades = move_date(trades, "time")
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View the demo data

quotes

time ticker bid ask
0 2021-05-23 09:04:07.013574 GOOG 720.50 720.93
1 2021-05-23 09:04:07.013574 MSFT 51.95 51.96
2 2021-05-23 09:04:07.020574 MSFT 51.97 51.98
3 2021-05-23 09:04:07.031574 MSFT 51.99 52.00
4 2021-05-23 09:04:07.038574 GOOG 720.50 720.93
5 2021-05-23 09:04:07.039574 AAPL 97.99 98.01
6 2021-05-23 09:04:07.062574 GOOG 720.50 720.88
7 2021-05-23 09:04:07.065574 MSFT 52.01 52.03

trades

time ticker price quantity
0 2021-05-23 09:04:07.041766 MSFT 51.95 75
1 2021-05-23 09:04:07.056766 MSFT 51.95 155
2 2021-05-23 09:04:07.066766 GOOG 720.77 100
3 2021-05-23 09:04:07.066766 GOOG 720.92 100
4 2021-05-23 09:04:07.066766 AAPL 98.00 100

stocks

ticker name exchange
0 MSFT Microsoft Corporation NASDAQ
1 GOOG Alphabet Inc NASDAQ
2 AAPL Apple Inc NASDAQ

7.6.3 Define, infer and ingest feature sets

import mlrun.feature_store as fstore
from mlrun.feature_store.steps import *
from mlrun.features import MinMaxValidator

Build and ingest simple feature set (stocks)

# add feature set without time column (stock ticker metadata)
stocks_set = fstore.FeatureSet("stocks", entities=[fstore.Entity("ticker")])
fstore.ingest(stocks_set, stocks, infer_options=fstore.InferOptions.default())

name exchange
ticker
MSFT Microsoft Corporation NASDAQ
GOOG Alphabet Inc NASDAQ
AAPL Apple Inc NASDAQ
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Build an advanced feature set - with feature engineering pipeline

Define a feature set with custom data processing and time aggregation functions:

# create a new feature set
quotes_set = fstore.FeatureSet("stock-quotes", entities=[fstore.Entity("ticker")])

Define a custom pipeline step (python class)

class MyMap(MapClass):
def __init__(self, multiplier=1, **kwargs):

super().__init__(**kwargs)
self._multiplier = multiplier

def do(self, event):
event["multi"] = event["bid"] * self._multiplier
return event

Build and show the transformatiom pipeline

Use storey stream processing classes along with library and custom classes:

quotes_set.graph.to("MyMap", multiplier=3)\
.to("storey.Extend", _fn="({'extra': event['bid'] * 77})")\
.to("storey.Filter", "filter", _fn="(event['bid'] > 51.92)")\
.to(FeaturesetValidator())

quotes_set.add_aggregation("ask", ["sum", "max"], "1h", "10m", name="asks1")
quotes_set.add_aggregation("ask", ["sum", "max"], "5h", "10m", name="asks5")
quotes_set.add_aggregation("bid", ["min", "max"], "1h", "10m", name="bids")

# add feature validation policy
quotes_set["bid"] = fstore.Feature(validator=MinMaxValidator(min=52, severity="info"))

# add default target definitions and plot
quotes_set.set_targets()
quotes_set.plot(rankdir="LR", with_targets=True)

<graphviz.dot.Digraph at 0x7fa9a4154250>

Test and show the pipeline results locally (allow to quickly develop and debug)

fstore.preview(
quotes_set,
quotes,
entity_columns=["ticker"],
timestamp_key="time",
options=fstore.InferOptions.default(),

)

info! bid value is smaller than min, key=['MSFT'] time=2021-05-23 09:04:07.013574 args={
→˓'min': 52, 'value': 51.95}
info! bid value is smaller than min, key=['MSFT'] time=2021-05-23 09:04:07.020574 args={
→˓'min': 52, 'value': 51.97}

(continues on next page)
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info! bid value is smaller than min, key=['MSFT'] time=2021-05-23 09:04:07.031574 args={
→˓'min': 52, 'value': 51.99}

asks1_sum_1h asks1_max_1h asks5_sum_5h asks5_max_5h bids_min_1h \
ticker
GOOG 720.93 720.93 720.93 720.93 720.50
MSFT 51.96 51.96 51.96 51.96 51.95
MSFT 103.94 51.98 103.94 51.98 51.95
MSFT 155.94 52.00 155.94 52.00 51.95
GOOG 1441.86 720.93 1441.86 720.93 720.50
AAPL 98.01 98.01 98.01 98.01 97.99
GOOG 2162.74 720.93 2162.74 720.93 720.50
MSFT 207.97 52.03 207.97 52.03 51.95

bids_max_1h time bid ask multi \
ticker
GOOG 720.50 2021-05-23 09:04:07.013574 720.50 720.93 2161.50
MSFT 51.95 2021-05-23 09:04:07.013574 51.95 51.96 155.85
MSFT 51.97 2021-05-23 09:04:07.020574 51.97 51.98 155.91
MSFT 51.99 2021-05-23 09:04:07.031574 51.99 52.00 155.97
GOOG 720.50 2021-05-23 09:04:07.038574 720.50 720.93 2161.50
AAPL 97.99 2021-05-23 09:04:07.039574 97.99 98.01 293.97
GOOG 720.50 2021-05-23 09:04:07.062574 720.50 720.88 2161.50
MSFT 52.01 2021-05-23 09:04:07.065574 52.01 52.03 156.03

extra
ticker
GOOG 55478.50
MSFT 4000.15
MSFT 4001.69
MSFT 4003.23
GOOG 55478.50
AAPL 7545.23
GOOG 55478.50
MSFT 4004.77

# print the feature set object
print(quotes_set.to_yaml())

kind: FeatureSet
metadata:
name: stock-quotes

spec:
entities:
- name: ticker
value_type: str

features:
- name: asks1_sum_1h
value_type: float
aggregate: true

- name: asks1_max_1h
(continues on next page)
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value_type: float
aggregate: true

- name: asks5_sum_5h
value_type: float
aggregate: true

- name: asks5_max_5h
value_type: float
aggregate: true

- name: bids_min_1h
value_type: float
aggregate: true

- name: bids_max_1h
value_type: float
aggregate: true

- name: bid
value_type: float
validator:
kind: minmax
severity: info
min: 52

- name: ask
value_type: float

- name: multi
value_type: float

- name: extra
value_type: float

partition_keys: []
timestamp_key: time
source:
path: None

targets:
- name: parquet
kind: parquet

- name: nosql
kind: nosql

graph:
states:
MyMap:
kind: task
class_name: MyMap
class_args:
multiplier: 3

storey.Extend:
kind: task
class_name: storey.Extend
class_args:
_fn: '({''extra'': event[''bid''] * 77})'

after:
- MyMap

filter:
kind: task
class_name: storey.Filter

(continues on next page)
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class_args:
_fn: (event['bid'] > 51.92)

after:
- storey.Extend

FeaturesetValidator:
kind: task
class_name: mlrun.feature_store.steps.FeaturesetValidator
class_args:
featureset: .
columns: null

after:
- filter

Aggregates:
kind: task
class_name: storey.AggregateByKey
class_args:
aggregates:
- name: asks1
column: ask
operations:
- sum
- max
windows:
- 1h
period: 10m

- name: asks5
column: ask
operations:
- sum
- max
windows:
- 5h
period: 10m

- name: bids
column: bid
operations:
- min
- max
windows:
- 1h
period: 10m

table: .
after:
- FeaturesetValidator

output_path: v3io:///projects/{{run.project}}/artifacts
status:
state: created
stats:
ticker:
count: 8
unique: 3
top: MSFT

(continues on next page)
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freq: 4
asks1_sum_1h:
count: 8.0
mean: 617.9187499999999
min: 51.96
max: 2162.74
std: 784.8779804245735
hist:
- - 4
- 1
- 0
- 0
- 0
- 0
- 1
- 0
- 0
- 0
- 0
- 0
- 0
- 1
- 0
- 0
- 0
- 0
- 0
- 1

- - 51.96
- 157.499
- 263.03799999999995
- 368.57699999999994
- 474.11599999999993
- 579.655
- 685.194
- 790.733
- 896.2719999999999
- 1001.8109999999999
- 1107.35
- 1212.889
- 1318.4279999999999
- 1423.9669999999999
- 1529.5059999999999
- 1635.0449999999998
- 1740.5839999999998
- 1846.1229999999998
- 1951.6619999999998
- 2057.2009999999996
- 2162.74

asks1_max_1h:
count: 8.0
mean: 308.59625

(continues on next page)
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min: 51.96
max: 720.93
std: 341.7989955655851
hist:
- - 4
- 1
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 3

- - 51.96
- 85.4085
- 118.857
- 152.3055
- 185.754
- 219.2025
- 252.65099999999998
- 286.0995
- 319.54799999999994
- 352.9964999999999
- 386.44499999999994
- 419.89349999999996
- 453.3419999999999
- 486.7904999999999
- 520.2389999999999
- 553.6875
- 587.136
- 620.5844999999999
- 654.0329999999999
- 687.4815
- 720.93

asks5_sum_5h:
count: 8.0
mean: 617.9187499999999
min: 51.96
max: 2162.74
std: 784.8779804245735
hist:

(continues on next page)
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- - 4
- 1
- 0
- 0
- 0
- 0
- 1
- 0
- 0
- 0
- 0
- 0
- 0
- 1
- 0
- 0
- 0
- 0
- 0
- 1

- - 51.96
- 157.499
- 263.03799999999995
- 368.57699999999994
- 474.11599999999993
- 579.655
- 685.194
- 790.733
- 896.2719999999999
- 1001.8109999999999
- 1107.35
- 1212.889
- 1318.4279999999999
- 1423.9669999999999
- 1529.5059999999999
- 1635.0449999999998
- 1740.5839999999998
- 1846.1229999999998
- 1951.6619999999998
- 2057.2009999999996
- 2162.74

asks5_max_5h:
count: 8.0
mean: 308.59625
min: 51.96
max: 720.93
std: 341.7989955655851
hist:
- - 4
- 1
- 0
- 0

(continues on next page)
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- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 3

- - 51.96
- 85.4085
- 118.857
- 152.3055
- 185.754
- 219.2025
- 252.65099999999998
- 286.0995
- 319.54799999999994
- 352.9964999999999
- 386.44499999999994
- 419.89349999999996
- 453.3419999999999
- 486.7904999999999
- 520.2389999999999
- 553.6875
- 587.136
- 620.5844999999999
- 654.0329999999999
- 687.4815
- 720.93

bids_min_1h:
count: 8.0
mean: 308.41125
min: 51.95
max: 720.5
std: 341.59667259325835
hist:
- - 4
- 1
- 0
- 0
- 0
- 0
- 0
- 0

(continues on next page)
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- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 3

- - 51.95
- 85.3775
- 118.80499999999999
- 152.2325
- 185.65999999999997
- 219.08749999999998
- 252.515
- 285.94249999999994
- 319.36999999999995
- 352.79749999999996
- 386.22499999999997
- 419.6524999999999
- 453.0799999999999
- 486.50749999999994
- 519.935
- 553.3625
- 586.79
- 620.2175
- 653.645
- 687.0725
- 720.5

bids_max_1h:
count: 8.0
mean: 308.42625
min: 51.95
max: 720.5
std: 341.58380276661245
hist:
- - 4
- 1
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0

(continues on next page)
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- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 3

- - 51.95
- 85.3775
- 118.80499999999999
- 152.2325
- 185.65999999999997
- 219.08749999999998
- 252.515
- 285.94249999999994
- 319.36999999999995
- 352.79749999999996
- 386.22499999999997
- 419.6524999999999
- 453.0799999999999
- 486.50749999999994
- 519.935
- 553.3625
- 586.79
- 620.2175
- 653.645
- 687.0725
- 720.5

time:
count: 8
mean: '2021-05-23 09:04:07.035699200'
min: '2021-05-23 09:04:07.013574'
max: '2021-05-23 09:04:07.065574'

bid:
count: 8.0
mean: 308.42625
min: 51.95
max: 720.5
std: 341.58380276661245
hist:
- - 4
- 1
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0

(continues on next page)
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- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 3

- - 51.95
- 85.3775
- 118.80499999999999
- 152.2325
- 185.65999999999997
- 219.08749999999998
- 252.515
- 285.94249999999994
- 319.36999999999995
- 352.79749999999996
- 386.22499999999997
- 419.6524999999999
- 453.0799999999999
- 486.50749999999994
- 519.935
- 553.3625
- 586.79
- 620.2175
- 653.645
- 687.0725
- 720.5

ask:
count: 8.0
mean: 308.59
min: 51.96
max: 720.93
std: 341.79037903369954
hist:
- - 4
- 1
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0

(continues on next page)
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- 0
- 0
- 0
- 0
- 3

- - 51.96
- 85.4085
- 118.857
- 152.3055
- 185.754
- 219.2025
- 252.65099999999998
- 286.0995
- 319.54799999999994
- 352.9964999999999
- 386.44499999999994
- 419.89349999999996
- 453.3419999999999
- 486.7904999999999
- 520.2389999999999
- 553.6875
- 587.136
- 620.5844999999999
- 654.0329999999999
- 687.4815
- 720.93

multi:
count: 8.0
mean: 925.27875
min: 155.85000000000002
max: 2161.5
std: 1024.7514082998375
hist:
- - 4
- 1
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0

(continues on next page)
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- 3
- - 155.85000000000002
- 256.13250000000005
- 356.415
- 456.6975
- 556.98
- 657.2625
- 757.545
- 857.8275
- 958.11
- 1058.3925
- 1158.6750000000002
- 1258.9575
- 1359.2399999999998
- 1459.5225
- 1559.8049999999998
- 1660.0875
- 1760.37
- 1860.6525000000001
- 1960.935
- 2061.2175
- 2161.5

extra:
count: 8.0
mean: 23748.82125
min: 4000.15
max: 55478.5
std: 26301.95281302916
hist:
- - 4
- 1
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 0
- 3

- - 4000.15
- 6574.0675
- 9147.985

(continues on next page)
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- 11721.9025
- 14295.82
- 16869.7375
- 19443.655000000002
- 22017.572500000002
- 24591.49
- 27165.4075
- 29739.325
- 32313.2425
- 34887.16
- 37461.0775
- 40034.995
- 42608.9125
- 45182.83
- 47756.747500000005
- 50330.665
- 52904.582500000004
- 55478.5

preview:
- - asks1_sum_1h
- asks1_max_1h
- asks5_sum_5h
- asks5_max_5h
- bids_min_1h
- bids_max_1h
- time
- bid
- ask
- multi
- extra

- - 720.93
- 720.93
- 720.93
- 720.93
- 720.5
- 720.5
- 2021-05-23T09:04:07.013574
- 720.5
- 720.93
- 2161.5
- 55478.5

- - 51.96
- 51.96
- 51.96
- 51.96
- 51.95
- 51.95
- 2021-05-23T09:04:07.013574
- 51.95
- 51.96
- 155.85000000000002
- 4000.15

(continues on next page)
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- - 103.94
- 51.98
- 103.94
- 51.98
- 51.95
- 51.97
- 2021-05-23T09:04:07.020574
- 51.97
- 51.98
- 155.91
- 4001.69

- - 155.94
- 52.0
- 155.94
- 52.0
- 51.95
- 51.99
- 2021-05-23T09:04:07.031574
- 51.99
- 52.0
- 155.97
- 4003.23

- - 1441.86
- 720.93
- 1441.86
- 720.93
- 720.5
- 720.5
- 2021-05-23T09:04:07.038574
- 720.5
- 720.93
- 2161.5
- 55478.5

- - 98.01
- 98.01
- 98.01
- 98.01
- 97.99
- 97.99
- 2021-05-23T09:04:07.039574
- 97.99
- 98.01
- 293.96999999999997
- 7545.23

- - 2162.74
- 720.93
- 2162.74
- 720.93
- 720.5
- 720.5
- 2021-05-23T09:04:07.062574
- 720.5

(continues on next page)
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- 720.88
- 2161.5
- 55478.5

- - 207.97
- 52.03
- 207.97
- 52.03
- 51.95
- 52.01
- 2021-05-23T09:04:07.065574
- 52.01
- 52.03
- 156.03
- 4004.77

Ingest data into offline and online stores

This writes to both targets (Parquet and NoSQL).

# save ingest data and print the FeatureSet spec
df = fstore.ingest(quotes_set, quotes)

info! bid value is smaller than min, key=['MSFT'] time=2021-05-23 09:04:07.013574 args={
→˓'min': 52, 'value': 51.95}
info! bid value is smaller than min, key=['MSFT'] time=2021-05-23 09:04:07.020574 args={
→˓'min': 52, 'value': 51.97}
info! bid value is smaller than min, key=['MSFT'] time=2021-05-23 09:04:07.031574 args={
→˓'min': 52, 'value': 51.99}
info! bid value is smaller than min, key=['MSFT'] time=2021-05-23 09:04:07.013574 args={
→˓'min': 52, 'value': 51.95}
info! bid value is smaller than min, key=['MSFT'] time=2021-05-23 09:04:07.020574 args={
→˓'min': 52, 'value': 51.97}
info! bid value is smaller than min, key=['MSFT'] time=2021-05-23 09:04:07.031574 args={
→˓'min': 52, 'value': 51.99}

7.6.4 Get an offline feature vector for training

Example of combining features from 3 sources with time travel join of 3 tables with time travel.

Specify a set of features and request the feature vector offline result as a dataframe:

features = [
"stock-quotes.multi",
"stock-quotes.asks5_sum_5h as total_ask",
"stock-quotes.bids_min_1h",
"stock-quotes.bids_max_1h",
"stocks.*",

]

(continues on next page)
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vector = fstore.FeatureVector("stocks-vec", features, description="stocks demo feature␣
→˓vector")
vector.save()

resp = fstore.get_offline_features(vector, entity_rows=trades, entity_timestamp_column=
→˓"time")
resp.to_dataframe()

price quantity multi total_ask bids_min_1h bids_max_1h \
0 51.95 75 155.97 155.94 51.95 51.99
1 51.95 155 155.97 155.94 51.95 51.99
2 720.77 100 2161.50 2162.74 720.50 720.50
3 720.92 100 2161.50 2162.74 720.50 720.50
4 98.00 100 293.97 98.01 97.99 97.99

name exchange
0 Microsoft Corporation NASDAQ
1 Microsoft Corporation NASDAQ
2 Alphabet Inc NASDAQ
3 Alphabet Inc NASDAQ
4 Apple Inc NASDAQ

7.6.5 Initialize an online feature service and use it for real-time inference

service = fstore.get_online_feature_service("stocks-vec")

Request feature vector statistics, can be used for imputing or validation

service.vector.get_stats_table()

count mean min max std \
multi 8.0 925.27875 155.85 2161.50 1024.751408
total_ask 8.0 617.91875 51.96 2162.74 784.877980
bids_min_1h 8.0 308.41125 51.95 720.50 341.596673
bids_max_1h 8.0 308.42625 51.95 720.50 341.583803
name 3.0 NaN NaN NaN NaN
exchange 3.0 NaN NaN NaN NaN

hist unique \
multi [[4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... NaN
total_ask [[4, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,... NaN
bids_min_1h [[4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... NaN
bids_max_1h [[4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,... NaN
name NaN 3.0
exchange NaN 1.0

top freq
multi NaN NaN
total_ask NaN NaN
bids_min_1h NaN NaN

(continues on next page)

104 Chapter 7. Tutorials and examples



mlrun, Release UNKNOWN

(continued from previous page)

bids_max_1h NaN NaN
name Alphabet Inc 1.0
exchange NASDAQ 3.0

Real-time feature vector request

service.get([{"ticker": "GOOG"}, {"ticker": "MSFT"}])

[{'asks5_sum_5h': 2162.74,
'bids_min_1h': 720.5,
'bids_max_1h': 720.5,
'multi': 2161.5,
'name': 'Alphabet Inc',
'exchange': 'NASDAQ',
'total_ask': None},

{'asks5_sum_5h': 207.97,
'bids_min_1h': 51.95,
'bids_max_1h': 52.01,
'multi': 156.03,
'name': 'Microsoft Corporation',
'exchange': 'NASDAQ',
'total_ask': None}]

service.get([{"ticker": "AAPL"}])

[{'asks5_sum_5h': 98.01,
'bids_min_1h': 97.99,
'bids_max_1h': 97.99,
'multi': 293.97,
'name': 'Apple Inc',
'exchange': 'NASDAQ',
'total_ask': None}]

service.close()

7.7 Feature store end-to-end demo

This demo shows the usage of MLRun and the feature store:

• Data ingestion & preparation

• Model training & testing

• Model serving

• Building an automated ML pipeline

Fraud prevention, specifically, is a challenge since it requires processing raw transactions and events in real-time and
being able to quickly respond and block transactions before they occur. Consider, for example, a case where you would
like to evaluate the average transaction amount. When training the model, it is common to take a DataFrame and
just calculate the average. However, when dealing with real-time/online scenarios, this average has to be calculated
incrementally.
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This demo illustrates how to Ingest different data sources to the Feature Store. Specifically, it covers two types of
data:

• Transactions: Monetary activity between two parties to transfer funds.

• Events: Activity performed by a party, such as login or password change.

The demo walks through creation of an ingestion pipeline for each data source with all the needed preprocessing and
validation. It runs the pipeline locally within the notebook and then launches a real-time function to ingest live data
or schedule a cron to run the task when needed.

Following the ingestion, you create a feature vector, select the most relevant features and create a final model. Then
you deploy the model and showcase the feature vector and model serving.

7.7.1 Part 1: Data Ingestion

This demo showcases financial fraud prevention. It uses the MLRun feature store to define complex features that help
identify fraud.

Fraud prevention is a special challenge since it requires processing raw transaction and events in real-time and being
able to quickly respond and block transactions before they occur.

To address this, you’ll create a development pipeline and a production pipeline. Both pipelines share the same feature
engineering and model code, but serve data very differently. Furthermore, MLRun automates the data and model
monitoring process, drift identification, and trigger retraining in a CI/CD pipeline. This process is described in the
diagram below:
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The raw data is described as follows:

TRANSAC-
TIONS

USER
EVENTS

age age group value 0-6. Some values are marked
as U for unknown

source The party/entity related to
the event

gender A character to define the age event event, such as login or pass-
word change

zipcodeOri ZIP code of the person originating the transac-
tion

timestamp The date and time of the
event

zipMerchant ZIP code of the merchant receiving the trans-
action

category category of the transaction (e.g., transporta-
tion, food, etc.)

amount the total amount of the transaction

fraud whether the transaction is fraudulent

timestamp the date and time in which the transaction took
place

source the ID of the party/entity performing the trans-
action

target the ID of the party/entity receiving the transac-
tion

device the device ID used to perform the transaction

This notebook introduces how to Ingest different data sources to the Feature Store.

The following FeatureSets are created:

• Transactions: Monetary transactions between a source and a target.

• Events: Account events such as account login or a password change.
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• Label: Fraud label for the data.

By the end of this tutorial you’ll know how to:

• Create an ingestion pipeline for each data source.

• Define preprocessing, aggregation, and validation of the pipeline.

• Run the pipeline locally within the notebook.

• Launch a real-time function to ingest live data.

• Schedule a cron to run the task when needed.

project_name = 'fraud-demo'

import mlrun

# Initialize the MLRun project object
project = mlrun.get_or_create_project(project_name, context="./", user_project=True)

> 2022-03-16 05:45:07,703 [info] loaded project fraud-demo from MLRun DB

Step 1 - Fetch, process and ingest the datasets

1.1 - Transactions

Transactions

# Helper functions to adjust the timestamps of our data
# while keeping the order of the selected events and
# the relative distance from one event to the other

def date_adjustment(sample, data_max, new_max, old_data_period, new_data_period):
'''

Adjust a specific sample's date according to the original and new time periods
'''
sample_dates_scale = ((data_max - sample) / old_data_period)
sample_delta = new_data_period * sample_dates_scale
new_sample_ts = new_max - sample_delta
return new_sample_ts

def adjust_data_timespan(dataframe, timestamp_col='timestamp', new_period='2d', new_max_
→˓date_str='now'):

'''
Adjust the dataframe timestamps to the new time period

'''
# Calculate old time period
data_min = dataframe.timestamp.min()
data_max = dataframe.timestamp.max()
old_data_period = data_max-data_min

# Set new time period
new_time_period = pd.Timedelta(new_period)

(continues on next page)
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new_max = pd.Timestamp(new_max_date_str)
new_min = new_max-new_time_period
new_data_period = new_max-new_min

# Apply the timestamp change
df = dataframe.copy()
df[timestamp_col] = df[timestamp_col].apply(lambda x: date_adjustment(x, data_max,␣

→˓new_max, old_data_period, new_data_period))
return df

import pandas as pd

# Fetch the transactions dataset from the server
transactions_data = pd.read_csv('https://s3.wasabisys.com/iguazio/data/fraud-demo-mlrun-
→˓fs-docs/data.csv', parse_dates=['timestamp'], nrows=500)

# Adjust the samples timestamp for the past 2 days
transactions_data = adjust_data_timespan(transactions_data, new_period='2d')

# Preview
transactions_data.head(3)

step age gender zipcodeOri zipMerchant category amount fraud \
0 0 4 M 28007 28007 es_transportation 4.55 0
1 0 2 M 28007 28007 es_transportation 39.68 0
2 0 4 F 28007 28007 es_transportation 26.89 0

timestamp source target \
0 2022-03-15 16:13:54.851486383 C1093826151 M348934600
1 2022-03-14 09:21:09.710448366 C352968107 M348934600
2 2022-03-15 22:41:20.666966912 C2054744914 M1823072687

device
0 f802e61d76564b7a89a83adcdfa573da
1 38ef7fc3eb7442c8ae64579a483f1d2b
2 7a851d0758894078b5846851ae32d5e3

Transactions - create a feature set and preprocessing pipeline

Create the feature set (data pipeline) definition for the credit transaction processing that describes the offline/online
data transformations and aggregations. The feature store automatically adds an offline parquet target and an online
NoSQL target by using set_targets().

The data pipeline consists of:

• Extracting the data components (hour, day of week)

• Mapping the age values

• One hot encoding for the transaction category and the gender

• Aggregating the amount (avg, sum, count, max over 2/12/24 hour time windows)

• Aggregating the transactions per category (over 14 days time windows)
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• Writing the results to offline (Parquet) and online (NoSQL) targets

# Import MLRun's Feature Store
import mlrun.feature_store as fstore
from mlrun.feature_store.steps import OneHotEncoder, MapValues, DateExtractor

# Define the transactions FeatureSet
transaction_set = fstore.FeatureSet("transactions",

entities=[fstore.Entity("source")],
timestamp_key='timestamp',
description="transactions feature set")

# Define and add value mapping
main_categories = ["es_transportation", "es_health", "es_otherservices",

"es_food", "es_hotelservices", "es_barsandrestaurants",
"es_tech", "es_sportsandtoys", "es_wellnessandbeauty",
"es_hyper", "es_fashion", "es_home", "es_contents",
"es_travel", "es_leisure"]

# One Hot Encode the newly defined mappings
one_hot_encoder_mapping = {'category': main_categories,

'gender': list(transactions_data.gender.unique())}

# Define the graph steps
transaction_set.graph\

.to(DateExtractor(parts = ['hour', 'day_of_week'], timestamp_col = 'timestamp'))\

.to(MapValues(mapping={'age': {'U': '0'}}, with_original_features=True))\

.to(OneHotEncoder(mapping=one_hot_encoder_mapping))

# Add aggregations for 2, 12, and 24 hour time windows
transaction_set.add_aggregation(name='amount',

column='amount',
operations=['avg','sum', 'count','max'],
windows=['2h', '12h', '24h'],
period='1h')

# Add the category aggregations over a 14 day window
for category in main_categories:

transaction_set.add_aggregation(name=category,column=f'category_{category}',
operations=['count'], windows=['14d'], period='1d')

# Add default (offline-parquet & online-nosql) targets
transaction_set.set_targets()

# Plot the pipeline so we can see the different steps
transaction_set.plot(rankdir="LR", with_targets=True)

<graphviz.dot.Digraph at 0x7f88af0f9cd0>

110 Chapter 7. Tutorials and examples



mlrun, Release UNKNOWN

Transactions - ingestion

# Ingest the transactions dataset through the defined pipeline
transactions_df = fstore.ingest(transaction_set, transactions_data,

infer_options=fstore.InferOptions.default())

transactions_df.head(3)

persist count = 0
persist count = 100
persist count = 200
persist count = 300
persist count = 400
persist count = 500
persist count = 600
persist count = 700
persist count = 800
persist count = 900
persist count = 1000

amount_count_2h amount_count_12h amount_count_24h \
source
C1093826151 1.0 1.0 1.0
C352968107 1.0 1.0 1.0
C2054744914 1.0 1.0 1.0

amount_max_2h amount_max_12h amount_max_24h amount_sum_2h \
source
C1093826151 4.55 4.55 4.55 4.55
C352968107 39.68 39.68 39.68 39.68
C2054744914 26.89 26.89 26.89 26.89

amount_sum_12h amount_sum_24h amount_avg_2h ... \
source ...
C1093826151 4.55 4.55 4.55 ...
C352968107 39.68 39.68 39.68 ...
C2054744914 26.89 26.89 26.89 ...

category_es_contents category_es_travel category_es_leisure \
source
C1093826151 0 0 0
C352968107 0 0 0
C2054744914 0 0 0

amount fraud timestamp target \
source
C1093826151 4.55 0 2022-03-15 16:13:54.851486383 M348934600
C352968107 39.68 0 2022-03-14 09:21:09.710448366 M348934600
C2054744914 26.89 0 2022-03-15 22:41:20.666966912 M1823072687

device timestamp_hour \
source

(continues on next page)
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C1093826151 f802e61d76564b7a89a83adcdfa573da 16
C352968107 38ef7fc3eb7442c8ae64579a483f1d2b 9
C2054744914 7a851d0758894078b5846851ae32d5e3 22

timestamp_day_of_week
source
C1093826151 1
C352968107 0
C2054744914 1

[3 rows x 57 columns]

1.2 - User events

User events - fetching

# Fetch the user_events dataset from the server
user_events_data = pd.read_csv('https://s3.wasabisys.com/iguazio/data/fraud-demo-mlrun-
→˓fs-docs/events.csv',

index_col=0, quotechar="\'", parse_dates=['timestamp'],␣
→˓nrows=500)

# Adjust to the last 2 days to see the latest aggregations in our online feature vectors
user_events_data = adjust_data_timespan(user_events_data, new_period='2d')

# Preview
user_events_data.head(3)

source event timestamp
0 C1974668487 details_change 2022-03-15 15:03:17.518565985
1 C1973547259 login 2022-03-15 18:05:50.652706656
2 C515668508 login 2022-03-15 14:37:49.845093748

User events - create a feature set and preprocessing pipeline

Define the events feature set. This is a fairly straightforward pipeline in which you only “one hot encode” the event
categories and save the data to the default targets.

user_events_set = fstore.FeatureSet("events",
entities=[fstore.Entity("source")],
timestamp_key='timestamp',
description="user events feature set")

# Define and add value mapping
events_mapping = {'event': list(user_events_data.event.unique())}

# One Hot Encode
user_events_set.graph.to(OneHotEncoder(mapping=events_mapping))

(continues on next page)
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# Add default (offline-parquet & online-nosql) targets
user_events_set.set_targets()

# Plot the pipeline so we can see the different steps
user_events_set.plot(rankdir="LR", with_targets=True)

<graphviz.dot.Digraph at 0x7f88ad6f1fd0>

User events - ingestion

# Ingestion of the newly created events feature set
events_df = fstore.ingest(user_events_set, user_events_data)
events_df.head(3)

persist count = 0
persist count = 100
persist count = 200
persist count = 300
persist count = 400
persist count = 500

event_details_change event_login event_password_change \
source
C1974668487 1 0 0
C1973547259 0 1 0
C515668508 0 1 0

timestamp
source
C1974668487 2022-03-15 15:03:17.518565985
C1973547259 2022-03-15 18:05:50.652706656
C515668508 2022-03-15 14:37:49.845093748

Step 2 - Create a labels dataset for model training

Label set - create a feature set

This feature set contains the label for the fraud demo, it is ingested directly to the default targets without any changes

def create_labels(df):
labels = df[['fraud','source','timestamp']].copy()
labels = labels.rename(columns={"fraud": "label"})
labels['timestamp'] = labels['timestamp'].astype("datetime64[ms]")
labels['label'] = labels['label'].astype(int)
labels.set_index('source', inplace=True)
return labels

7.7. Feature store end-to-end demo 113



mlrun, Release UNKNOWN

# Define the "labels" feature set
labels_set = fstore.FeatureSet("labels",

entities=[fstore.Entity("source")],
timestamp_key='timestamp',
description="training labels",
engine="pandas")

labels_set.graph.to(name="create_labels", handler=create_labels)

# specify only Parquet (offline) target since its not used for real-time
labels_set.set_targets(['parquet'], with_defaults=False)
labels_set.plot(with_targets=True)

<graphviz.dot.Digraph at 0x7f88a3561f90>

Label set - ingestion

# Ingest the labels feature set
labels_df = fstore.ingest(labels_set, transactions_data)
labels_df.head(3)

label timestamp
source
C1093826151 0 2022-03-15 16:13:54.851
C352968107 0 2022-03-14 09:21:09.710
C2054744914 0 2022-03-15 22:41:20.666

Step 3 - Deploy a real-time pipeline

When dealing with real-time aggregation, it’s important to be able to update these aggregations in real-time. For this
purpose, you’ll create live serving functions that update the online feature store of the transactions FeatureSet and
Events FeatureSet.

Using MLRun’s serving runtime, create a nuclio function loaded with the feature set’s computational graph definition
and an HttpSource to define the HTTP trigger.

Notice that the implementation below does not require any rewrite of the pipeline logic.

3.1 - Transactions

Transactions - deploy the feature set live endpoint

# Create iguazio v3io stream and transactions push API endpoint
transaction_stream = f'v3io:///projects/{project.name}/streams/transaction'
transaction_pusher = mlrun.datastore.get_stream_pusher(transaction_stream)

# Define the source stream trigger (use v3io streams)
# Define the `key` and `time` fields (extracted from the Json message).

(continues on next page)
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source = mlrun.datastore.sources.StreamSource(path=transaction_stream , key_field='source
→˓', time_field='timestamp')

# Deploy the transactions feature set's ingestion service over a real-time (Nuclio)␣
→˓serverless function
# you can use the run_config parameter to pass function/service specific configuration
transaction_set_endpoint = fstore.deploy_ingestion_service(featureset=transaction_set,␣
→˓source=source)

> 2022-03-16 05:45:43,035 [info] Starting remote function deploy
2022-03-16 05:45:43 (info) Deploying function
2022-03-16 05:45:43 (info) Building
2022-03-16 05:45:43 (info) Staging files and preparing base images
2022-03-16 05:45:43 (warn) Python 3.6 runtime is deprecated and will soon not be␣
→˓supported. Please migrate your code and use Python 3.7 runtime (`python:3.7`) or higher
2022-03-16 05:45:43 (info) Building processor image
2022-03-16 05:47:03 (info) Build complete
2022-03-16 05:47:08 (info) Function deploy complete
> 2022-03-16 05:47:08,835 [info] successfully deployed function: {'internal_invocation_
→˓urls': ['nuclio-fraud-demo-admin-transactions-ingest.default-tenant.svc.cluster.
→˓local:8080'], 'external_invocation_urls': ['fraud-demo-admin-transactions-ingest-fraud-
→˓demo-admin.default-tenant.app.xtvtjecfcssi.iguazio-cd1.com/']}

Transactions - test the feature set HTTP endpoint

By defining the transactions feature set you can now use MLRun and Storey to deploy it as a live endpoint, ready
to ingest new data!

Using MLRun’s serving runtime, create a nuclio function loaded with the feature set’s computational graph definition
and an HttpSource to define the HTTP trigger.

import requests
import json

# Select a sample from the dataset and serialize it to JSON
transaction_sample = json.loads(transactions_data.sample(1).to_json(orient='records'))[0]
transaction_sample['timestamp'] = str(pd.Timestamp.now())
transaction_sample

{'step': 0,
'age': '5',
'gender': 'M',
'zipcodeOri': 28007,
'zipMerchant': 28007,
'category': 'es_transportation',
'amount': 2.19,
'fraud': 0,
'timestamp': '2022-03-16 05:47:08.884971',
'source': 'C546957379',
'target': 'M348934600',
'device': '8ee3b24f2eb143759e938b6148da547c'}
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# Post the sample to the ingestion endpoint
requests.post(transaction_set_endpoint, json=transaction_sample).text

'{"id": "c3f8a087-3932-45c0-8dcb-1fd8efabe681"}'

3.2 - User events

User events - deploy the feature set live endpoint

Deploy the events feature set’s ingestion service using the feature set and all the previously defined resources.

# Create iguazio v3io stream and transactions push API endpoint
events_stream = f'v3io:///projects/{project.name}/streams/events'
events_pusher = mlrun.datastore.get_stream_pusher(events_stream)

# Define the source stream trigger (use v3io streams)
# Define the `key` and `time` fields (extracted from the Json message).
source = mlrun.datastore.sources.StreamSource(path=events_stream , key_field='source',␣
→˓time_field='timestamp')

# Deploy the transactions feature set's ingestion service over a real-time (Nuclio)␣
→˓serverless function
# you can use the run_config parameter to pass function/service specific configuration
events_set_endpoint = fstore.deploy_ingestion_service(featureset=user_events_set,␣
→˓source=source)

> 2022-03-16 05:47:09,035 [info] Starting remote function deploy
2022-03-16 05:47:09 (info) Deploying function
2022-03-16 05:47:09 (info) Building
2022-03-16 05:47:09 (info) Staging files and preparing base images
2022-03-16 05:47:09 (warn) Python 3.6 runtime is deprecated and will soon not be␣
→˓supported. Please migrate your code and use Python 3.7 runtime (`python:3.7`) or higher
2022-03-16 05:47:09 (info) Building processor image

User events - test the feature set HTTP endpoint

# Select a sample from the events dataset and serialize it to JSON
user_events_sample = json.loads(user_events_data.sample(1).to_json(orient='records'))[0]
user_events_sample['timestamp'] = str(pd.Timestamp.now())
user_events_sample

# Post the sample to the ingestion endpoint
requests.post(events_set_endpoint, json=user_events_sample).text
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Done!

You’ve completed Part 1 of the data-ingestion with the feature store. Proceed to Part 2 to learn how to train an ML
model using the feature store data.

7.7.2 Part 2: Training

This part shows how to use MLRun’s Feature Store to easily define a Feature Vector and create the dataset you need
to run the training process.
By the end of this tutorial you’ll learn how to:

• Combine multiple data sources to a single Feature Vector

• Create training dataset

• Create a model using an MLRun Hub function

project_name = 'fraud-demo'

import mlrun

# Initialize the MLRun project object
project = mlrun.get_or_create_project(project_name, context="./", user_project=True)

> 2021-09-19 17:59:27,165 [info] loaded project fraud-demo from MLRun DB

Step 1 - Create a feature vector

In this section you create the Feature Vector.
The Feature vector has a name so you can reference to it later via the URI or the serving function, and a list of features
from the available FeatureSets. You can add a feature from a feature set by adding <FeatureSet>.<Feature> to the
list, or add <FeatureSet>.* to add all the FeatureSet’s available features.

By default, the first FeatureSet in the feature list acts as the spine, meaning that all the other features will be joined to
it.
For example, in this instance the spine is the early_sense sensor data, so for each early_sense event we will create
produce a row in the resulted Feature Vector.

# Define the list of features you will be using
features = ['transactions.amount_max_2h',

'transactions.amount_sum_2h',
'transactions.amount_count_2h',
'transactions.amount_avg_2h',
'transactions.amount_max_12h',
'transactions.amount_sum_12h',
'transactions.amount_count_12h',
'transactions.amount_avg_12h',
'transactions.amount_max_24h',
'transactions.amount_sum_24h',
'transactions.amount_count_24h',
'transactions.amount_avg_24h',
'transactions.es_transportation_count_14d',
'transactions.es_health_count_14d',

(continues on next page)
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'transactions.es_otherservices_count_14d',
'transactions.es_food_count_14d',
'transactions.es_hotelservices_count_14d',
'transactions.es_barsandrestaurants_count_14d',
'transactions.es_tech_count_14d',
'transactions.es_sportsandtoys_count_14d',
'transactions.es_wellnessandbeauty_count_14d',
'transactions.es_hyper_count_14d',
'transactions.es_fashion_count_14d',
'transactions.es_home_count_14d',
'transactions.es_travel_count_14d',
'transactions.es_leisure_count_14d',
'transactions.gender_F',
'transactions.gender_M',
'transactions.step',
'transactions.amount',
'transactions.timestamp_hour',
'transactions.timestamp_day_of_week',
'events.*']

# Import MLRun's Feature Store
import mlrun.feature_store as fstore

# Define the feature vector name for future reference
fv_name = 'transactions-fraud'

# Define the feature vector using our Feature Store (fstore)
transactions_fv = fstore.FeatureVector(fv_name,

features,
label_feature="labels.label",
description='Predicting a fraudulent transaction')

# Save the feature vector in the Feature Store
transactions_fv.save()

Step 2 - Preview the feature vector data

Obtain the values of the features in the feature vector, to ensure the data appears as expected.

# Import the Parquet Target so you can directly save the dataset as a file
from mlrun.datastore.targets import ParquetTarget

# Get offline feature vector as dataframe and save the dataset to parquet
train_dataset = fstore.get_offline_features(fv_name, target=ParquetTarget())

> 2021-09-19 17:59:28,415 [info] wrote target: {'name': 'parquet', 'kind': 'parquet',
→˓'path': 'v3io:///projects/fraud-demo-admin/FeatureStore/transactions-fraud/parquet/
→˓vectors/transactions-fraud-latest.parquet', 'status': 'ready', 'updated': '2021-09-
→˓19T17:59:28.415727+00:00', 'size': 1915182}
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# Preview the dataset
train_dataset.to_dataframe().tail(5)

amount_max_2h amount_sum_2h amount_count_2h amount_avg_2h \
49995 2.95 2.95 1.0 2.950
49996 37.40 37.40 1.0 37.400
49997 7.75 7.75 1.0 7.750
49998 28.89 28.89 1.0 28.890
49999 78.18 105.43 2.0 52.715

amount_max_12h amount_sum_12h amount_count_12h amount_avg_12h \
49995 2.95 2.95 1.0 2.950
49996 37.40 37.40 1.0 37.400
49997 7.75 12.99 2.0 6.495
49998 38.35 107.76 4.0 26.940
49999 78.18 153.78 3.0 51.260

amount_max_24h amount_sum_24h ... gender_F gender_M step amount \
49995 2.95 2.95 ... 1 0 41 2.95
49996 37.40 37.40 ... 0 1 40 37.40
49997 61.23 112.76 ... 1 0 91 7.75
49998 52.97 249.41 ... 0 1 56 28.89
49999 78.18 220.19 ... 1 0 76 78.18

timestamp_hour timestamp_day_of_week event_details_change \
49995 17 6 0.0
49996 17 6 0.0
49997 17 6 1.0
49998 17 6 1.0
49999 17 6 1.0

event_login event_password_change label
49995 0.0 1.0 0
49996 0.0 1.0 0
49997 0.0 0.0 0
49998 0.0 0.0 0
49999 0.0 0.0 0

[5 rows x 36 columns]

Step 3 - Train models and choose highest accuracy

With MLRun, one can easily train different models and compare the results. The code below trains three different
models, and chooses the model with the highest accuracy. Each uses a different algorithm (random forest, XGBoost,
adabost).

# Import the Sklearn classifier function from the functions hub
classifier_fn = mlrun.import_function('hub://sklearn-classifier')

# Prepare the parameters list for the training function
# Use 3 different models

(continues on next page)
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training_params = {"model_name": ['transaction_fraud_rf',
'transaction_fraud_xgboost',
'transaction_fraud_adaboost'],

"model_pkg_class": ['sklearn.ensemble.RandomForestClassifier',
'sklearn.ensemble.GradientBoostingClassifier',
'sklearn.ensemble.AdaBoostClassifier']}

# Define the training task, including the feature vector, label and hyperparams␣
→˓definitions
train_task = mlrun.new_task('training',

inputs={'dataset': transactions_fv.uri},
params={'label_column': 'label'}
)

train_task.with_hyper_params(training_params, strategy='list', selector='max.accuracy')

# Specify the cluster image
classifier_fn.spec.image = 'mlrun/mlrun'

# Run training
classifier_fn.run(train_task, local=False)

> 2021-09-19 17:59:28,799 [info] starting run training␣
→˓uid=9349c60dd9f24a33b536c59e89978e7b DB=http://mlrun-api:8080
> 2021-09-19 17:59:29,042 [info] Job is running in the background, pod: training-2jntc
> 2021-09-19 17:59:47,926 [info] best iteration=1, used criteria max.accuracy
> 2021-09-19 17:59:48,990 [info] run executed, status=completed
final state: completed

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-09-19 17:59:51,574 [info] run executed, status=completed

<mlrun.model.RunObject at 0x7f464baf0c50>

Step 4 - Perform feature selection

As part of our data science process, try to reduce the training dataset’s size to get rid of bad or unuseful features and
save computation time.

Use the ready-made feature selection function from the hub hub://feature_selection to select the best features to
keep on a sample from the dataset, and run the function on that.

feature_selection_fn = mlrun.import_function('hub://feature_selection')

(continues on next page)
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feature_selection_run = feature_selection_fn.run(
params={'sample_ratio':0.25,

'output_vector_name':fv_name + "-short",
'ignore_type_errors': True},

inputs={'df_artifact': transactions_fv.uri},
name='feature_extraction',
handler='feature_selection',

local=False)

> 2021-09-19 17:59:51,768 [info] starting run feature_extraction␣
→˓uid=3a50bd0e4175459fb53873d8f78a440a DB=http://mlrun-api:8080
> 2021-09-19 17:59:52,004 [info] Job is running in the background, pod: feature-
→˓extraction-lf46d
> 2021-09-19 17:59:59,099 [info] Couldn't calculate chi2 because of: Input X must be non-
→˓negative.
> 2021-09-19 18:00:04,008 [info] votes needed to be selected: 3
> 2021-09-19 18:00:05,329 [info] wrote target: {'name': 'parquet', 'kind': 'parquet',
→˓'path': 'v3io:///projects/fraud-demo-admin/FeatureStore/transactions-fraud-short/
→˓parquet/vectors/transactions-fraud-short-latest.parquet', 'status': 'ready', 'updated
→˓': '2021-09-19T18:00:05.329695+00:00', 'size': 668722}
> 2021-09-19 18:00:05,677 [info] run executed, status=completed
Pass k=5 as keyword args. From version 0.25 passing these as positional arguments will␣
→˓result in an error
Liblinear failed to converge, increase the number of iterations.
final state: completed

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-09-19 18:00:07,537 [info] run executed, status=completed

mlrun.get_dataitem(feature_selection_run.outputs['top_features_vector']).as_df().tail(5)

amount_max_2h amount_sum_2h amount_count_2h amount_avg_2h \
49996 37.40 37.40 1.0 37.400000
49997 7.75 7.75 1.0 7.750000
49998 28.89 28.89 1.0 28.890000
49999 78.18 105.43 2.0 52.715000
50000 19.37 24.61 3.0 8.203333

amount_max_12h label
49996 37.40 0
49997 7.75 0
49998 38.35 0
49999 78.18 0
50000 19.37 0

7.7. Feature store end-to-end demo 121



mlrun, Release UNKNOWN

Step 5 - Train the models with top features

Following the feature selection, you train new models using the resultant features. You can observe the accuracy and
other results remain high, meaning you get a model that requires less features to be accurate and thus less error-prone.

# Defining our training task, including our feature vector, label and hyperparams␣
→˓definitions
ensemble_train_task = mlrun.new_task('training',

inputs={'dataset': feature_selection_run.outputs['top_features_
→˓vector']},

params={'label_column': 'label'}
)

ensemble_train_task.with_hyper_params(training_params, strategy='list', selector='max.
→˓accuracy')

classifier_fn.run(ensemble_train_task)

> 2021-09-19 18:00:07,661 [info] starting run training␣
→˓uid=a6d9ae72cfd3462cace205f8b363d214 DB=http://mlrun-api:8080
> 2021-09-19 18:00:08,077 [info] Job is running in the background, pod: training-v2bt4
> 2021-09-19 18:00:20,781 [info] best iteration=3, used criteria max.accuracy
> 2021-09-19 18:00:21,696 [info] run executed, status=completed
final state: completed

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-09-19 18:00:27,561 [info] run executed, status=completed

<mlrun.model.RunObject at 0x7f464baed490>

Done!

You’ve completed Part 2 of the model training with the feature store. Proceed to Part 3 to learn how to deploy and
monitor the model.

7.7.3 Part 3: Serving

In this part you use MLRun’s serving runtime to deploy the trained models from the previous stage a Voting
Ensemble using max vote logic.
You will also use MLRun’s Feature store to receive the latest tag of the online Feature Vector we defined in the
previous stage.

By the end of this tutorial you’ll learn how to:

• Define a model class to load the models, run preprocessing, and predict on the data

• Define Voting Ensemble function on top of our models
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• Test the serving function locally using the mock server

• Deploy the function to the cluster and test it live

Environment setup

First, make sure SciKit-Learn is installed in the correct version:

!pip install -U scikit-learn==1.0.2

Restart your kernel post installing. Secondly, since the work is done in this project scope, define the project itself for
all your MLRun work in this notebook.

project_name = 'fraud-demo'

import mlrun

# Initialize the MLRun project object
project = mlrun.get_or_create_project(project_name, context="./", user_project=True)

> 2021-10-28 11:59:01,033 [info] loaded project fraud-demo from MLRun DB

Define model class

• Load models

• Predict from the FS Online service via the source key

# mlrun: start-code

import numpy as np
from cloudpickle import load
from mlrun.serving.v2_serving import V2ModelServer

class ClassifierModel(V2ModelServer):

def load(self):
"""load and initialize the model and/or other elements"""
model_file, extra_data = self.get_model('.pkl')
self.model = load(open(model_file, 'rb'))

def predict(self, body: dict) -> list:
"""Generate model predictions from sample"""
print(f"Input -> {body['inputs']}")
feats = np.asarray(body['inputs'])
result: np.ndarray = self.model.predict(feats)
return result.tolist()

# mlrun: end-code
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Define a serving function

MLRun serving can produce managed real-time serverless pipelines from various tasks, including MLRun models or
standard model files. The pipelines use the Nuclio real-time serverless engine, which can be deployed anywhere. Nuclio
is a high-performance open-source serverless framework that’s focused on data, I/O, and compute-intensive workloads.

The EnrichmentVotingEnsemble and the EnrichmentModelRouter router classes auto enrich the request with data
from the feature store. The router input accepts lists of inference request (each request can be a dict or list of incoming
features/keys). It enriches the request with data from the specified feature vector (feature_vector_uri).

In many cases the features can have null values (None, NaN, Inf, . . . ). The Enrichment routers can substitute the null
value with fixed or statistical value per feature. This is done through the impute_policy parameter, which accepts
the impute policy per feature (where * is used to specify the default). The value can be a fixed number for constants or
$mean, $max, $min, $std, $count for statistical values. to substitute the value with the equivalent feature stats (taken
from the feature store).

The code below performs the following steps:

• Gather ClassifierModel code from this notebook

• Define EnrichmentVotingEnsemble - Max-Vote based ensemble with feature enrichment and imputing

• Add the previously trained models to the ensemble

# Create the serving function from the code above
serving_fn = mlrun.code_to_function('transaction-fraud', kind='serving', image="mlrun/
→˓mlrun")

serving_fn.set_topology('router', 'mlrun.serving.routers.EnrichmentVotingEnsemble', name=
→˓'VotingEnsemble',

feature_vector_uri="transactions-fraud-short", impute_policy={"*
→˓": "$mean"})

model_names = [
'RandomForestClassifier',
'GradientBoostingClassifier',
'AdaBoostClassifier'
]

for i, name in enumerate(model_names, start=1):
serving_fn.add_model(name, class_name="ClassifierModel", model_path=project.get_

→˓artifact_uri(f"training_model#{i}:latest"))

# Plot the ensemble configuration
serving_fn.spec.graph.plot()

<graphviz.dot.Digraph at 0x7f5af5d471d0>

124 Chapter 7. Tutorials and examples

https://nuclio.io/


mlrun, Release UNKNOWN

Test the server locally

Before deploying the serving function, test it in the current notebook and check the model output.

# Create a mock server from the serving function
local_server = serving_fn.to_mock_server()

> 2021-10-28 11:59:11,260 [info] model RandomForestClassifier was loaded
> 2021-10-28 11:59:11,306 [info] model GradientBoostingClassifier was loaded
> 2021-10-28 11:59:11,350 [info] model AdaBoostClassifier was loaded

# Choose an id for the test
sample_id = 'C76780537'

model_inference_path = '/v2/models/infer'

# Send our sample ID for prediction
local_server.test(path=model_inference_path,

body={'inputs': [[sample_id]]})

# Notice the input vector is printed 3 times (once per child model) and is enriched with␣
→˓data from the feature store

Input -> [[14.68, 14.68, 1.0, 14.68, 70.81]]
Input -> [[14.68, 14.68, 1.0, 14.68, 70.81]]
Input -> [[14.68, 14.68, 1.0, 14.68, 70.81]]

{'id': '757c736c985a4c42b3ebd58f3c50f1b2',
'model_name': 'VotingEnsemble',
'outputs': [0],
'model_version': 'v1'}

Accessing the real-time feature vector directly

You can also directly query the feature store values using the get_online_feature_service method. This method
is used internally in the EnrichmentVotingEnsemble router class

import mlrun.feature_store as fstore

# Create the online feature service
svc = fstore.get_online_feature_service('transactions-fraud-short:latest', impute_policy=
→˓{"*": "$mean"})

# Get sample feature vector
sample_fv = svc.get([{'source': sample_id}])
sample_fv

[{'amount_max_2h': 14.68,
'amount_max_12h': 70.81,
'amount_sum_2h': 14.68,

(continues on next page)
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'amount_count_2h': 1.0,
'amount_avg_2h': 14.68}]

Deploying the function on the kubernetes cluster

You can now deploy the function. Once it’s deployed you get a function with an http trigger that can be called from
other locations.

import os

# Enable model monitoring
serving_fn.set_tracking()
project.set_model_monitoring_credentials(os.getenv('V3IO_ACCESS_KEY'))

# Deploy the serving function
serving_fn.deploy()

> 2021-10-28 11:59:17,554 [info] Starting remote function deploy
2021-10-28 11:59:17 (info) Deploying function
2021-10-28 11:59:17 (info) Building
2021-10-28 11:59:17 (info) Staging files and preparing base images
2021-10-28 11:59:17 (info) Building processor image
2021-10-28 11:59:19 (info) Build complete
2021-10-28 11:59:25 (info) Function deploy complete
> 2021-10-28 11:59:25,657 [info] successfully deployed function: {'internal_invocation_
→˓urls': ['nuclio-fraud-demo-admin-transaction-fraud.default-tenant.svc.cluster.
→˓local:8080'], 'external_invocation_urls': ['default-tenant.app.yh38.iguazio-cd2.
→˓com:32287']}

'http://default-tenant.app.yh38.iguazio-cd2.com:32287'

Test the server

Test the serving function and examine the model output.

# Choose an id for the test
sample_id = 'C76780537'

model_inference_path = '/v2/models/infer'

# Send the sample ID for prediction
serving_fn.invoke(path=model_inference_path,

body={'inputs': [[sample_id]]})

> 2021-10-28 11:59:25,722 [info] invoking function: {'method': 'POST', 'path': 'http://
→˓nuclio-fraud-demo-admin-transaction-fraud.default-tenant.svc.cluster.local:8080/v2/
→˓models/infer'}
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{'id': '4b9c4914-964f-4bd5-903d-c4885ed7c090',
'model_name': 'VotingEnsemble',
'outputs': [0],
'model_version': 'v1'}

You can also directly query the feature store values, which are used in the enrichment.

Simulate incoming data

# Load the dataset
data = mlrun.get_dataitem('https://s3.wasabisys.com/iguazio/data/fraud-demo-mlrun-fs-
→˓docs/data.csv').as_df()

# Sample 50k lines
data = data.sample(50000)

# keys
sample_ids = data['source'].to_list()

from random import choice, uniform
from time import sleep

# Sending random requests
for _ in range(4000):

data_point = choice(sample_ids)
try:

resp = serving_fn.invoke(path=model_inference_path, body={'inputs': [[data_
→˓point]]})

print(resp)
sleep(uniform(0.2, 1.7))

except OSError:
pass

> 2021-10-28 12:00:23,079 [info] invoking function: {'method': 'POST', 'path': 'http://
→˓nuclio-fraud-demo-admin-transaction-fraud.default-tenant.svc.cluster.local:8080/v2/
→˓models/infer'}
{'id': '6b813638-e9ef-4e92-85c8-cfbd0b74fe32', 'model_name': 'VotingEnsemble', 'outputs
→˓': [0], 'model_version': 'v1'}
> 2021-10-28 12:00:23,857 [info] invoking function: {'method': 'POST', 'path': 'http://
→˓nuclio-fraud-demo-admin-transaction-fraud.default-tenant.svc.cluster.local:8080/v2/
→˓models/infer'}
{'id': 'f84bf2ec-a718-4e90-a7d5-fe08e254f3c8', 'model_name': 'VotingEnsemble', 'outputs
→˓': [0], 'model_version': 'v1'}
> 2021-10-28 12:00:24,545 [info] invoking function: {'method': 'POST', 'path': 'http://
→˓nuclio-fraud-demo-admin-transaction-fraud.default-tenant.svc.cluster.local:8080/v2/
→˓models/infer'}
{'id': '7bb023f7-edbc-47a6-937b-4a15c8380b74', 'model_name': 'VotingEnsemble', 'outputs
→˓': [0], 'model_version': 'v1'}
> 2021-10-28 12:00:24,921 [info] invoking function: {'method': 'POST', 'path': 'http://
→˓nuclio-fraud-demo-admin-transaction-fraud.default-tenant.svc.cluster.local:8080/v2/
→˓models/infer'}

(continues on next page)
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{'id': '57882cca-537a-43e1-9986-1bbc72fb84b7', 'model_name': 'VotingEnsemble', 'outputs
→˓': [0], 'model_version': 'v1'}

7.7.4 Part 4: Automated ML pipeline

MLRun Project is a container for all your work on a particular activity: sll the associated code, functions, jobs/workflows
and artifacts. Projects can be mapped to git repositories which enables versioning, collaboration, and CI/CD. Users
can create project definitions using the SDK or a yaml file and store those in MLRun DB, file, or archive. Once the
project is loaded you can run jobs/workflows which refer to any project element by name, allowing separation between
configuration and code.

Projects contain workflows that execute the registered functions in a sequence/graph (DAG). It can reference project
parameters, secrets and artifacts by name. The following notebook demonstrate how to build an automated workflow
with feature selection, training, testing, and deployment.

Step 1: Setting up your project

To run a pipeline, you first need to get or create a project object and define/import the required functions for its execution.
See Create and load projects for details.

The following code gets or creates a user project named “fraud-demo-<username>”.

# Set the base project name
project_name = 'fraud-demo'

import mlrun

# Initialize the MLRun project object
project = mlrun.get_or_create_project(project_name, context="./", user_project=True)

> 2021-10-28 13:54:45,892 [info] loaded project fraud-demo from MLRun DB

Step 2: Updating project and function definitions

You need to save the definitions for the function you use in the projects so it is possible to automatically convert code to
functions or import external functions whenever you load new versions of the code or when you run automated CI/CD
workflows. In addition you may want to set other project attributes such as global parameters, secrets, and data.

The code can be stored in Python files, notebooks, external repositories, packaged containers, etc. Use the project.
set_function() method to register the code in the project. The definitions are saved to the project object, as well as
in a YAML file in the root of our project. Functions can also be imported from MLRun marketplace (using the hub://
schema).

You used the following functions in this tutorial:

• feature_selection — the first function, which determines the top features to be used for training

• train — the model-training function

• test-classifier — the model-testing function
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• mlrun-model — the model-serving function

```{admonition} Note: set_function uses the code_to_function and import_function methods under the hood
(used in the previous notebooks), but in addition it saves the function configurations in the project spec for use in
automated workflows and CI/CD.

Add the function definitions to the project along with parameters and data artifacts and␣
→˓save the project.

project.set_function('hub://feature_selection', 'feature_selection')
project.set_function('hub://sklearn-classifier','train')
project.set_function('hub://test_classifier', 'test')
project.set_function('hub://v2_model_server', 'serving')

<mlrun.runtimes.serving.ServingRuntime at 0x7f6229497190>

# set project level parameters and save
project.spec.params = {'label_column': 'label'}
project.save()

When you save the project it stores the project definitions in the project.yaml. This means that you can load the
project from the source control (GIT) and run it with a single command or API call.

The project YAML for this project can be printed using:

print(project.to_yaml())

kind: project
metadata:
name: fraud-demo-admin
created: '2021-08-05T15:59:59.434655'

spec:
params:
label_column: label

functions:
- url: hub://feature_selection
name: feature_selection

- url: hub://sklearn-classifier
name: train

- url: hub://test_classifier
name: test

- url: hub://v2_model_server
name: serving

workflows:
- name: main
path: workflow.py
engine: null

artifacts: []
desired_state: online
disable_auto_mount: false

(continues on next page)
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status:
state: online

Saving and loading projects from GIT

After you save the project and its elements (functions, workflows, artifacts, etc.) you can commit all the changes to a
GIT repository. Do this using standard GIT tools or using MLRun project methods such as pull, push, remote that
call the Git API for you.

Projects can then be loaded from Git using MLRun load_project method, for example:

project = mlrun.load_project("./myproj", "git://github.com/mlrun/project-demo.git",␣
→˓name=project_name)

or using MLRun CLI:

mlrun project -n myproj -u "git://github.com/mlrun/project-demo.git" ./myproj

Read Create and load projects for more details.

Using Kubeflow pipelines

You’re now ready to create a full ML pipeline. This is done by using Kubeflow Pipelines — an open-source frame-
work for building and deploying portable, scalable, machine-learning workflows based on Docker containers. MLRun
leverages this framework to take your existing code and deploy it as steps in the pipeline.

Step 3: Defining and saving a pipeline workflow

A pipeline is created by running an MLRun “workflow”. The following code defines a workflow and writes it to a
file in your local directory; (the file name is workflow.py). The workflow describes a directed acyclic graph (DAG)
for execution using Kubeflow Pipelines, and depicts the connections between the functions and the data as part of an
end-to-end pipeline. The workflow file has a definition of a pipeline DSL for connecting the function inputs and outputs.

The defined pipeline includes the following steps:

• Perform feature selection (feature_selection).

• Train and the model (train).

• Test the model with its test data set.

• Deploy the model as a real-time serverless function (deploy).

Note: A pipeline can also include continuous build integration and deployment (CI/CD) steps, such as
building container images and deploying models.

%%writefile workflow.py
import mlrun
from kfp import dsl
from mlrun.model import HyperParamOptions

(continues on next page)
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from mlrun import (
build_function,
deploy_function,
import_function,
run_function,

)

@dsl.pipeline(
name="Fraud Detection Pipeline",
description="Detecting fraud from a transactions dataset"

)

def kfpipeline(vector_name='transactions-fraud'):

project = mlrun.get_current_project()

# Feature selection
feature_selection = run_function(

"feature_selection",
name="feature_selection",
params={'sample_ratio':0.25,'output_vector_name': "short",

'ignore_type_errors': True},
inputs={'df_artifact': project.get_artifact_uri(vector_name, 'feature-vector')},
outputs=['top_features_vector'])

# train with hyper-paremeters
train = run_function(

"train",
name="train",
params={"sample": -1,

"label_column": project.get_param('label_column', 'label'),
"test_size": 0.10},

hyperparams={"model_name": ['transaction_fraud_rf',
'transaction_fraud_xgboost',
'transaction_fraud_adaboost'],

'model_pkg_class': ["sklearn.ensemble.RandomForestClassifier",
"sklearn.linear_model.LogisticRegression",
"sklearn.ensemble.AdaBoostClassifier"]},

hyper_param_options=HyperParamOptions(selector="max.accuracy"),
inputs={"dataset": feature_selection.outputs['top_features_vector']},
outputs=['model', 'test_set'])

# test and visualize our model
test = run_function(

"test",
name="test",
params={"label_column": project.get_param('label_column', 'label')},
inputs={

(continues on next page)
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"models_path": train.outputs["model"],
"test_set": train.outputs["test_set"]})

# route the serving model to use enrichment
funcs['serving'].set_topology('router',

'mlrun.serving.routers.EnrichmentModelRouter',
name='EnrichmentModelRouter',
feature_vector_uri="transactions-fraud-short",
impute_policy={"*": "$mean"},
exist_ok=True)

# deploy the model as a serverless function, you can pass a list of models to serve
deploy = deploy_function("serving", models=[{"key": 'fraud', "model_path": train.

→˓outputs["model"]}])

Overwriting workflow.py

Step 4: Registering the workflow

Use the set_workflow MLRun project method to register your workflow with MLRun. The following code sets the
name parameter to the selected workflow name (“main”) and the code parameter to the name of the workflow file that
is found in your project directory (workflow.py).

# Register the workflow file as "main"
project.set_workflow('main', 'workflow.py')

Step 5: Running a pipeline

First run the following code to save your project:

project.save()

Use the run MLRun project method to execute your workflow pipeline with Kubeflow Pipelines.

You can pass arguments or set the artifact_path to specify a unique path for storing the workflow artifacts.

run_id = project.run(
'main',
arguments={},
dirty=True, watch=True)

<graphviz.dot.Digraph at 0x7f6234c28b50>

<IPython.core.display.HTML object>
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Step 6: Test the model end point

Now that your model is deployed using the pipeline, you can invoke it as usual:

# Define the serving function
serving_fn = project.func('serving')

# Choose an id for the test
sample_id = 'C76780537'
model_inference_path = '/v2/models/fraud/infer'

# Send the sample ID for predcition
serving_fn.invoke(path=model_inference_path,

body={'inputs': [[sample_id]]})

> 2021-10-28 13:56:56,170 [info] invoking function: {'method': 'POST', 'path': 'http://
→˓nuclio-fraud-demo-admin-v2-model-server.default-tenant.svc.cluster.local:8080/v2/
→˓models/fraud/infer'}

{'id': '90f4b67c-c9e0-4e35-917f-979b71c5ad75',
'model_name': 'fraud',
'outputs': [0.0]}

Done!

Train, Compare, and Register Models Quick overview of training ML models using MLRun MLOps orchestration
framework.

Serving ML/DL models How to serve standard ML/DL models using MLRun Serving.

Projects and Automated ML Pipeline How to work with projects, source control (git), and automating the
ML pipeline.

Apply MLRun on Existing Code Use MLRun to execute existing code on a remote cluster with experiment
tracking.

Feature store example (stocks) Build features with complex transformations in batch and serve in real-time.

Feature Store End-to-End Demo Use the feature store with data ingestion, model training, model serving
and automated pipeline.

You can find different end-to-end demos in MLRun demos repository at github.com/mlrun/demos.

7.8 Running the demos in Open Source MLRun

By default, these demos work with the online feature store, which is currently not part of the Open Source MLRun
default deployment:

• fraud-prevention-feature-store

• network-operations

• azureml_demo
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CHAPTER

EIGHT

PROJECTS

A project is a container for all your work on a particular activity/application. It is the basic starting point for your
work. Project definitions include all of the associated code, functions, submitting tasks/jobs to functions, artifacts,
lists of parameters, and secrets. You can create project definitions using the SDK or a yaml file and store those in the
MLRun DB, a file, or an archive. Project jobs/workflows refer to all project resources by name, establishing a separation
between configuration and code.

Projects can be mapped to git repositories or IDE project (in PyCharm, VSCode, etc.), which enables versioning,
collaboration, and CI/CD. Project access can be restricted to a set of users and roles.

Projects can be loaded/cloned using a single command. Once the project is loaded you can execute the functions or
workflows locally, on a cluster, or inside a CI/CD framework.

In this section

8.1 Create and load projects

Projects refer to a context directory that holds all the project code and configuration. The context dir is usually
mapped to a git repository and/or to an IDE (PyCharm, VSCode, etc.) project.

There are three ways to create/load a project object:

• new_project()— Create a new MLRun project and optionally load it from a yaml/zip/git template.

• load_project()— Load a project from a context directory or remote git/zip/tar archive.

• get_or_create_project() — Load a project from the MLRun DB if it exists, or from a specified con-
text/archive.

Projects can also be loaded and workflows/pipelines can be executed using the CLI (using the mlrun project com-
mand).

Note

Data-access permissions are given to the original creator of files. If you transfer ownership on a project to a user in
a different user group, then you must give the new owner the relevant permissions on the data files and folders of the
project (by modifying the POSIX permissions in the file-system on the project files if possible). Otherwise, the user
will not be able to work with the project data.

In this section

• Creating a new project

• Load and run projects from context, git or archive
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• Get a project from DB or create it (get_or_create_project)

• Working with Git

8.1.1 Creating a new project

To define a new project from scratch, use new_project(). You must specify a name, location for the context
directory (e.g. ./) and other optional parameters (see below). The context dir holds the configuration, code, and
workflow files. File paths in the project are relative to the context root.

# create a project with local and marketplace functions
project = mlrun.new_project("myproj", "./", init_git=True, description="my new␣

→˓project")
project.set_function('prep_data.py', 'prep-data', image='mlrun/mlrun', handler='prep_

→˓data')
project.set_function('hub://sklearn_classifier', 'train')

# register a simple named artifact in the project (to be used in workflows)
data_url = 'https://s3.wasabisys.com/iguazio/data/iris/iris.data.raw.csv'
project.set_workflow('main', "./myflow.py")

# add a multi-stage workflow (./myflow.py) to the project with the name 'main' and␣
→˓save the project

project.set_artifact('data', Artifact(target_path=data_url))
project.save()

# run the "main" workflow (watch=True to wait for run completion)
project.run("main", watch=True)

When projects are saved a project.yaml file with project definitions is written to the context dir. Alternatively, you
can manually create the project.yaml file and load it using load_project() or the from_template parameter.
The generated project.yaml for the above project looks like:

kind: project
metadata:
name: myproj

spec:
description: my new project
functions:
- url: prep_data.py
name: prep-data
image: mlrun/mlrun
handler: prep_data

- url: hub://sklearn_classifier
name: train

workflows:
- name: main
path: ./myflow.py
engine: kfp

artifacts:
- kind: ''
target_path: https://s3.wasabisys.com/iguazio/data/iris/iris.data.raw.csv
key: data
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Projects can also be created from a template (yaml file, zip file, or git repo), allowing users to create reusable skeletons.
The content of the zip/tar/git archive is copied into the context dir.

The init_git flag is used to initialize git in the context dir, the remote attribute is used to register the remote git
repository URL, and the user_project flag indicates that the project name is unique to the user.

Example of creating a new project from a zip template:

# create a project from zip, initialize a local git, and register the git remote path
project = mlrun.new_project("myproj", "./", init_git=True, user_project=True,

remote="git://github.com/mlrun/demo-xgb-project.git",
from_template="http://mysite/proj.zip")

# add another marketplace function and save
project.set_function('hub://test_classifier', 'test')
project.save()

Note

• Projects are visible in the MLRun dashboard only after they’re saved to the MLRun database (with .save()) or
after the workflows are executed (with .run()).

• You can ensure the project name is unique per user by setting the user_project parameter to True.

8.1.2 Load and run projects from context, git or archive

When a project is already created and stored in a git archive you can quickly load and use it with the load_project()
method. load_project uses a local context directory (with initialized git) or clones a remote repo into the local dir
and returns a project object.

You need to provide the path to the context dir and the git/zip/tar archive url. The name can be specified or taken
from the project object, they can also specify secrets (repo credentials), init_git flag (to initialize git in the context
dir), clone flag (indicating we must clone and ignore/remove local copy), and user_project flag (indicate the project
name is unique to the user).

Example of loading a project from git and running the main workflow:

project = mlrun.load_project("./", "git://github.com/mlrun/project-demo.git")
project.run("main", arguments={'data': data_url})

Note

If the url parameter is not specified it searches for Git repo inside the context dir and uses its metadata, or uses the
init_git=True flag to initialize a Git repo in the target context directory.
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Load and run using the CLI

Loading a project from git into ./ :

mlrun project -n myproj -u "git://github.com/mlrun/project-demo.git" .

Running a specific workflow (main) from the project stored in . (current dir):

mlrun project -r main -w .

CLI usage details:

Usage: mlrun project [OPTIONS] [CONTEXT]

Options:
-n, --name TEXT project name
-u, --url TEXT remote git or archive url
-r, --run TEXT run workflow name of .py file
-a, --arguments TEXT pipeline arguments name and value tuples (with -r flag),

e.g. -a x=6

-p, --artifact-path TEXT output artifacts path if not default
-x, --param TEXT mlrun project parameter name and value tuples,

e.g. -p x=37 -p y='text'

-s, --secrets TEXT secrets file=<filename> or env=ENV_KEY1,..
--init-git for new projects init git context
-c, --clone force override/clone into the context dir
--sync sync functions into db
-w, --watch wait for pipeline completion (with -r flag)
-d, --dirty allow run with uncommitted git changes

8.1.3 Get a project from DB or create it (get_or_create_project)

If you already have a project saved in the DB and you need to access/use it (for example from a different notebook or
file), use the get_or_create_project() method. It first tries to read the project from the DB, and only if it doesn’t
exist in the DB it loads/creates it.

Note

If you update the project object from different files/notebooks/users, make sure you .save() your project after a change,
and run get_or_create_project to load changes made by others.

Example:

# load project from the DB (if exist) or the source repo
project = mlrun.get_or_create_project("myproj", "./", "git://github.com/mlrun/demo-

→˓xgb-project.git")
project.pull("development") # pull the latest code from git
project.run("main", arguments={'data': data_url}) # run the workflow "main"
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8.1.4 Working with Git

You can update the code using the standard Git process (commit, push). If you update/edit the project object you need
to run project.save(), which updates the project.yaml file in your context directory, followed by pushing your
updates.

You can use the standard git cli to pull, commit, push, etc. MLRun project syncs with the local git state. You can
also use project methods with the same functionality. It simplifies the work for common task but does not expose the
full git functionality.

• pull()— pull/update sources from git or tar into the context dir

• create_remote()— create remote for the project git

• push()— save project state and commit/push updates to remote git repo

For example: proj.push(branch, commit_message, add=[]) saves the state to DB & yaml, commits updates,
push

Note

You must push updates before you build functions or run workflows which use code from git, since the builder or
containers pull the code from the git repo.

If you are using containerized Jupyter you might need to first set your Git parameters, e.g. using the following com-
mands:

git config --global user.email "<my@email.com>"
git config --global user.name "<name>"
git config --global credential.helper store

After that you need to login once to git with your password, as well as restart the notebook.

project.push('master', 'some edits')

8.2 Using projects

You can add/update a project’s functions, artifacts, or workflows using set_function(), set_artifact(),
set_workflow(), and set various project attributes (parameters, secrets, etc.).

Use the project run() method to run a registered workflow using a pipeline engine (e.g. Kubeflow pipelines). The
workflow executes its registered functions in a sequence/graph (DAG). The workflow can reference project parameters,
secrets, and artifacts by name.

Projects can also be loaded and workflows/pipelines can be executed using the CLI (using mlrun project command).

In this section

• Updating and using project functions

• Run, build, and deploy functions
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8.2.1 Updating and using project functions

Projects host or link to functions that are used in job or workflow runs. You add functions to a project using
set_function(). This registers them as part of the project definition (and Yaml file). Alternatively, you can create
functions using methods like code_to_function() and save them to the DB (under the same project). The preferred
approach is to use set_function (which also records the functions in the project spec).

The set_function() method allow you to add/update many types of functions:

• marketplace functions - load/register a marketplace function into the project (func=“hub://. . . ”)

• notebook file - convert a notebook file into a function (func=“path/to/file.ipynb”)

• python file - convert a python file into a function (func=“path/to/file.py”)

• database function - function stored in MLRun DB (func=“db://project/func-name:version”)

• function yaml file - read the function object from a yaml file (func=“path/to/file.yaml”)

• inline function spec - save the full function spec in the project definition file (func=func_object), not recom-
mended

When loading a function from code file (py, ipynb) you should also specify a container image and the runtime kind
(will use job kind as default). You can optionally specify the function handler (the function handler to invoke), and
a name.

If the function is not a single file function, and it requires access to multiple files/libraries in the project, you should set
the with_repo=True to add the entire repo code into the destination container during build or run time.

Note

When using with_repo=True the functions need to be deployed (function.deploy()) to build a container, unless
you set project.spec.load_source_on_run=True which instructs MLRun to load the git/archive repo into the
function container at run time and do not require a build (this is simpler when developing, for production it’s preferred
to build the image with the code)

Examples:

project.set_function('hub://sklearn_classifier', 'train')
project.set_function('http://.../mynb.ipynb', 'test', image="mlrun/mlrun")
project.set_function('./src/mycode.py', 'ingest',

image='myrepo/ing:latest', with_repo=True)
project.set_function('db://project/func-name:version')
project.set_function('./func.yaml')
project.set_function(func_object)

You can get the function object of a function that is registered or saved in the project by using project.
get_function(key).

Example:

# get the data-prep function, add volume mount and run it with data input
project.get_function("data-prep").apply(v3io_mount())
run = project.run_function("data-prep", inputs={"data": data_url})
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8.2.2 Run, build, and deploy functions

There is a set of methods used to deploy and run project functions. They can be used interactively or inside a pipeline
(inside a pipeline it will be automatically mapped to the relevant pipeline engine command).

• run_function() - Run a local or remote task as part of a local run or pipeline

• build_function() - deploy an ML function, build a container with its dependencies for use in runs

• deploy_function() - deploy real-time/online (nuclio or serving based) functions

You can use those methods as project methods, or as global (mlrun.) methods. The current project is assumed for
the later case.

run = myproject.run_function("train", inputs={"data": data_url}) # will run the "train"␣
→˓function in myproject
run = mlrun.run_function("train", inputs={"data": data_url}) # will run the "train"␣
→˓function in the current/active project

The first parameter in those three methods is the function name (in the project), or it can be a function object if you
want to use functions you imported/created ad hoc, for example:

# import a serving function from the marketplace and deploy a trained model over it
serving = import_function("hub://v2_model_server", new_name="serving")
deploy = deploy_function(

serving,
models=[{"key": "mymodel", "model_path": train.outputs["model"]}],

)

8.3 Working with secrets

When executing jobs through MLRun, the code might need access to specific secrets, for example to access data residing
on a data-store that requires credentials (such as a private S3 bucket), or many other similar needs.

MLRun provides some facilities that allow handling secrets and passing those secrets to execution jobs. It’s important
to understand how these facilities work, as this has implications on the level of security they provide and how much
exposure they create for your secrets.

In this section

• Overview

• MLRun-managed secrets

– Using tasks with secrets

– Secret providers

∗ Kubernetes project secrets

∗ Azure Vault

∗ Demo/Development secret providers

• Externally managed secrets

– Mapping secrets to environment

– Mapping secrets as files
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8.3.1 Overview

There are two main use-cases for providing secrets to an MLRun job. These are:

• Use MLRun-managed secrets. This is a flow that enables the MLRun user (for example a data scientist or engi-
neer) to create and use secrets through interfaces that MLRun implements and manages.

• Create secrets externally to MLRun using a Kubernetes secret or some other secret management framework (such
as Azure vault), and utilize these secrets from within MLRun to enrich execution jobs. For example, the secrets
are created and managed by an IT admin, and the data-scientist only accesses them.

The following sections cover the details of those two use-cases.

8.3.2 MLRun-managed secrets

The easiest way to pass secrets to MLRun jobs is through the MLRun project secrets mechanism. MLRun jobs auto-
matically gain access to all project secrets defined for the same project. More details are available later in this page.

The following is an example of using project secrets:

# Create project secrets for the myproj project
project = mlrun.get_or_create_project("myproj", "./")
secrets = {'AWS_KEY': '111222333'}
project.set_secrets(secrets=secrets, provider="kubernetes")

# Create and run the MLRun job
function = mlrun.code_to_function(

name="secret_func",
filename="my_code.py",
handler="test_function",
kind="job",
image="mlrun/mlrun"

)
function.run()

The handler defined in my_code.py accesses the AWS_KEY secret by using the get_secret() API:

def test_function(context):
context.logger.info("running function")
aws_key = context.get_secret("AWS_KEY")
# Use aws_key to perform processing.
...

Using tasks with secrets

MLRun uses the concept of Tasks to encapsulate runtime parameters. Tasks are used to specify execution context such
as hyper-parameters. They can also be used to pass details about secrets that are going to be used in the runtime. This
allows for control over specific secrets passed to runtimes, and support for the various MLRun secret providers.

To pass secret parameters, use the Task’s with_secrets() function. For example, the following command passes
specific project-secrets to the execution context:

function = mlrun.code_to_function(
name="secret_func",

(continues on next page)
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(continued from previous page)

filename="my_code.py",
handler="test_function",
kind="job",
image="mlrun/mlrun"

)
task = mlrun.new_task().with_secrets("kubernetes", ["AWS_KEY", "DB_PASSWORD"])
run = function.run(task, ...)

The with_secrets() function tells MLRun what secrets the executed code needs to access. The MLRun framework
prepares the needed infrastructure to make these secrets available to the runtime, and passes information about them to
the execution framework by specifying those secrets in the spec of the runtime. For example, if running a kubernetes
job, the secret keys are noted in the generated pod’s spec.

The actual details of MLRun’s handling of the secrets differ per the secret provider used. The following sections
provide more details on these providers and how they handle secrets and their values.

Regardless of the type of secret provider used, the executed code uses the get_secret() API to gain access to the
value of the secrets passed to it, as shown in the above example.

Secret providers

MLRun provides several secret providers. Each of these providers functions differently and have different traits with
respect to what secrets can be passed and how they’re handled. It’s important to understand these parameters to make
sure secrets are not compromised and that their secrecy is maintained.

Warning: The Inline, environment and file providers do not guarantee confidentiality of the secret values han-
dled by them, and should only be used for development and demo purposes. The Kubernetes and Azure Vault
providers are secure and should be used for any other use-case.

Kubernetes project secrets

MLRun can use Kubernetes (k8s) secrets to store and retrieve secret values on a per-project basis. This method is
supported for all runtimes that generate k8s pods. MLRun creates a k8s secret per project, and stores multiple secret
keys within this secret. Project secrets can be created through the MLRun SDK as well as through the MLRun UI.

By default, all jobs in a project automatically get access to all the associated project secrets. There is no need to use
with_secrets to provide access to project secrets.

Creating project secrets

To populate the MLRun k8s project secret with secret values, use the project object’s set_secrets() function, which
accepts a dictionary of secret values or a file containing a list of secrets. For example:

# Create project secrets for the myproj project.
project = mlrun.get_or_create_project("myproj", "./")
secrets = {'password': 'myPassw0rd', 'AWS_KEY': '111222333'}
project.set_secrets(secrets=secrets, provider="kubernetes")
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Warning: This action should not be part of the code committed to git or part of ongoing execution - it is only
a setup action, which normally should only be executed once. After the secrets are populated, this code should be
removed to protect the confidentiality of the secret values.

The MLRun API does not allow the user to see project secrets values, but it does allow seeing the keys that belong to a
given project, assuming the user has permissions on that specific project. See the HTTPRunDB class documentation for
additional details.

When MLRun is executed in the Iguazio platform, the secret management APIs are protected by the platform such that
only users with permissions to access and modify a specific project can alter its secrets.

Creating secrets in the Projects UI page

The Settings dialog in the Projects page, accessed with the Settings icon, has a Secrets tab where you can add secrets
as key-value pairs. The secrets are automatically available to all jobs belonging to this project. Users with the Editor or
Admin role can add, modify, and delete secrets, and assign new secret values. Viewers can only view the secret keys.
The values themselves are not visible to any users.

Accessing the secrets

By default, any runtime not executed locally (local=False) automatically gains access to all the secrets of the project
it belongs to, so no configuration is required to enable that. Jobs that are executed locally (local=True) do not have
access to the project secrets. It is possible to limit access of an executing job to a subset of these secrets by calling
the following function with a list of the secrets to be accessed:

task.with_secrets('kubernetes', ['password', 'AWS_KEY'])

When the job is executed, the MLRun framework adds environment variables to the pod spec whose value is retrieved
through the k8s valueFrom option, with secretKeyRef pointing at the secret maintained by MLRun. As a result,
this method does not expose the secret values at all, except inside the pod executing the code where the secret value is
exposed through an environment variable. This means that even a user with kubectl looking at the pod spec cannot
see the secret values.

Users, however, can view the secrets using the following methods:

• Run kubectl to view the actual contents of the k8s secret.

• Perform kubectl exec into the running pod, and examine the environment variables.

To maintain the confidentiality of secret values, these operations must be strictly limited across the system by using k8s
RBAC and ensuring that elevated permissions are granted to a very limited number of users (very few users have and
use elevated permissions).
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Accessing secrets in nuclio functions

Nuclio functions do not have the MLRun context available to retrieve secret values. Secret values need to be retrieved
from the environment variable of the same name. For example, to access the AWS_KEY secret in a nuclio function use:

aws_key = os.environ.get("AWS_KEY")

Azure Vault

MLRun can serve secrets from an Azure key Vault.

Note: Azure key Vaults support 3 types of entities - keys, secrets and certificates. MLRun only supports
accessing secret entities.

Setting up access to Azure key vault

To enable this functionality, a secret must first be created in the k8s cluster that contains the Azure key Vault credentials.
This secret should include credentials providing access to your specific Azure key Vault. To configure this, the following
steps are needed:

1. Set up a key vault in your Azure subscription.

2. Create a service principal in Azure that will be granted access to the key vault. For creating a service principal
through the Azure portal follow the steps listed in this page.

3. Assign a key vault access policy to the service principal, as described in this page.

4. Create a secret access key for the service principal, following the steps listed in this page. Make sure you have
access to the following three identifiers:

• Directory (tenant) id

• Application (client) id

• Secret key

5. Generate a k8s secret with those details. Use the following command:

kubectl -n <namespace> create secret generic <azure_key_vault_k8s_secret> \
--from-literal=secret=<secret key> \
--from-literal=tenant_id=<tenant id> \
--from-literal=client_id=<client id>

Note: The names of the secret keys must be as shown in the above example, as MLRun queries them by these exact
names.
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Accessing Azure key vault secrets

Once these steps are done, use with_secrets in the following manner:

task.with_secrets(
"azure_vault",
{

"name": <azure_key_vault_name>,
"k8s_secret": <azure_key_vault_k8s_secret>,
"secrets": [],

},
)

The name parameter should point at your Azure key Vault name. The secrets parameter is a list of the secret keys to
be accessed from that specific vault. If it’s empty (as in the example above) then all secrets in the vault can be accessed
by their key name.

For example, if the Azure Vault has a secret whose name is MY_AZURE_SECRET and using the above example for
with_secrets(), the executed code can use the following statement to access this secret:

azure_secret = context.get_secret("MY_AZURE_SECRET")

In terms of confidentiality, the executed pod has the Azure secret provided by the user mounted to it. This means that
the access-keys to the vault are visible to a user that execs into the pod in question. The same security rules should be
followed as described in the Kubernetes section above.

Demo/Development secret providers

The rest of the MLRun secret providers are not secure by design, and should only be used for demonstration or devel-
opment purposes.

Inline

The inline secrets provider is a very basic framework that should mostly be used for testing and demos. The secrets
passed by this framework are exposed in the source code creating the MLRun function, as well as in the function spec,
and in the generated pod specs. To add inline secrets to a job, perform the following:

task.with_secrets("inline", {"MY_SECRET": "12345"})

As can be seen, even the client code exposes the secret value. If this is used to pass secrets to a job running in a
kubernetes pod, the secret is also visible in the pod spec. This means that any user that can run kubectl and is
permitted to view pod specs can also see the secret keys and their values.
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Environment

Environment variables are similar to the inline secrets, but their client-side value is not specified directly in code but
rather is extracted from a client-side environment variable. For example, if running MLRun on a Jupyter notebook and
there are environment variables named MY_SECRET and ANOTHER_SECRET on Jupyter, the following code
passes those secrets to the executed runtime:

task.with_secrets("env", "MY_SECRET, ANOTHER_SECRET")

When generating the runtime execution environment (for example, pod for the job runtime), MLRun retrieves the value
of the environment variable and places it in the pod spec. This means that a user with kubectl capabilities who can
see pod specs can still see the secret values passed in this manner.

File

The file provider is used to pass secret values that are stored in a local file. The file needs to be made of lines, each
containing a secret and its value separated by =. For example:

# secrets.txt
SECRET1=123456
SECRET2=abcdef

Use the following command to add these secrets:

task.with_secrets("file", "/path/to/file/secrets.txt")

8.3.3 Externally managed secrets

MLRun provides facilities to map k8s secrets that were created externally to jobs that are executed. To enable that,
the spec of the runtime that is created should be modified by mounting secrets to it - either as files or as environment
variables containing specific keys from the secret.

Mapping secrets to environment

Let’s assume a k8s secret called my-secret was created in the same k8s namespace where MLRun is running, with
two keys in it - secret1 and secret2. The following example adds these two secret keys as environment variables to
an MLRun job:

function = mlrun.code_to_function(
name="secret_func",
handler="test_function",
...

)

function.set_env_from_secret(
"SECRET_ENV_VAR_1", secret="my-secret", secret_key="secret1"

)
function.set_env_from_secret(

"SECRET_ENV_VAR_2", secret="my-secret", secret_key="secret2"
)
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This only takes effect for functions executed remotely, as the secret value is injected to the function pod, which does not
exist for functions executed locally. Within the function code, the secret values will be exposed as regular environment
variables, for example:

# Function handler
def test_function(context):

# Getting the value in the secret2 key.
my_secret_value = os.environ.get("SECRET_ENV_VAR_2")
...

Mapping secrets as files

A k8s secret can be mapped as a filesystem folder to the function pod using the mount_secret() function:

# Mount all keys in the secret as files under /mnt/secrets
function.mount_secret("my-secret", "/mnt/secrets/")

This creates two files in the function pod, called /mnt/secrets/secret1 and /mnt/secrets/secret2. Reading
these files provide the values. It is possible to limit the keys mounted to the function - see the documentation of
mount_secret() for more details.
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CHAPTER

NINE

DATA AND ARTIFACTS

One of the biggest challenge in distributed systems is handling data given the different access methods, APIs, and
authentication mechanisms across types and providers.

Working with the abstractions enable you to securely access different data sources through a single API, many contin-
uance methods (e.g. to/from DataFrame, get, download, list, . . . ), automated data movement, and versioning.

MLRun provides three main abstractions to access structured and unstructured data:

In this section

9.1 Data items

A data item can be one item or a or collection of items (file, dir, table, etc.).

When running jobs or pipelines, data is passed using the DataItem objects. Data items objects abstract away the
data backend implementation, provide a set of convenience methods (.as_df, .get, .show, . . . ), and enable auto
logging/versioning of data and metadata.

Example function:

def prep_data(context, source_url: mlrun.DataItem, label_column='label'):
# Convert the DataItem to a Pandas DataFrame
df = source_url.as_df()
df = df.drop(label_column, axis=1).dropna()
context.log_dataset('cleaned_data', df=df, index=False, format='csv')

Running the function:

prep_data_run = data_prep_func.run(name='prep_data',
handler=prep_data,
inputs={'source_url': source_url},
params={'label_column': 'userid'})

In order to call the function with an input you can use the inputs dictionary attribute. In order to pass a simple
parameter, use the params dictionary attribute. The input value is the specific item uri (per data store schema) as
explained in Shared data stores.

Reading the data results from the run, you can easily get a run output artifact as a DataItem (so that you can view/use
the artifact) using:

# read the data locally as a Dataframe
prep_data_run.artifact('cleaned_data').as_df()
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The DataItem supports multiple convenience methods such as:

• get(), put() - to read/write data

• download(), upload() - to download/upload files

• as_df() - to convert the data to a DataFrame object

• local - to get a local file link to the data (that is downloaded locally if needed)

• listdir(), stat - file system like methods

• meta - access to the artifact metadata (in case of an artifact uri)

• show() - visualizes the data in Jupyter (as image, html, etc.)

See the DataItem class documentation for details. mlrun.datastore.DataItem

In order to get a DataItem object from a url use get_dataitem() or get_object() (returns the DataItem.get()).

For example:

df = mlrun.get_dataitem('s3://demo-data/mydata.csv').as_df()
print(mlrun.get_object('https://my-site/data.json'))

9.2 Artifacts

An artifact is any data that is produced and/or consumed by functions, jobs, or pipelines.

Artifacts metadata is stored in the project’s database. The main types of artifacts are:

• Files — files, directories, images, figures, and plotlines

• Datasets — any data, such as tables and DataFrames

• Models — all trained models

• Feature Store Objects — Feature Sets and Feature Vectors

In this section

• Viewing artifacts

• Artifact path

• Saving artifacts in run-specific paths

• Artifact URIs, versioning, and metadata

• See also

9.2.1 Viewing artifacts

Artifacts can be viewed and managed in the UI. In the project page, select the artifact type models, files, or
feature-store (for datasets and feature store objects).

Example dataset artifact screen:

150 Chapter 9. Data and artifacts

../api/mlrun.datastore#mlrun.datastore.DataItem


mlrun, Release UNKNOWN

You can search the artifacts based on time and labels. For each artifact, you can view its location, the artifact type,
labels, the producer of the artifact, the artifact owner, last update date, and type-specific information.

Artifacts can also be viewed from the Jobs > Artifacts tab. For each artifact, you can view its content as well as
download the artifact.

9.2.2 Artifact path

Jobs use the default or job specific artifact_path parameter to determine where the artifacts are stored. The default
artifact_path can be specified at the cluster level, client level, project level, or job level (at that precedence order),
or can be specified as a parameter in the specific log operation.

You can set the default artifact_path for your environment using the set_environment() function.

You can override the default artifact_path configuration by setting the artifact_path parameter of the
set_environment() function. You can use variables in the artifacts path, such as {{project}} for the name of the
running project or {{run.uid}} for the current job/pipeline run UID. (The default artifacts path uses {{project}}.)
The following example configures the artifacts path to an artifacts directory in the current active directory (./
artifacts)

set_environment(project=project_name, artifact_path='./artifacts')

For Iguazio MLOps Platform users

In the platform, the default artifacts path is a /artifacts directory in the predefined “projects” data container: /v3io/
projects/<project name>/artifacts (for example, /v3io/projects/myproject/artifacts for a “mypro-
ject” project).
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9.2.3 Saving artifacts in run-specific paths

When you specify {{run.uid}}, the artifacts for each job are stored in a dedicated directory for each executed job.
Under the artifact path, you should see the source-data file in a new directory whose name is derived from the unique
run ID. Otherwise, the same artifacts directory is used in all runs, and the artifacts for newer runs override those from
the previous runs.

As previously explained, set_environment returns a tuple with the project name and artifacts path. You can optionally
save your environment’s artifacts path to a variable, as demonstrated in the previous steps. You can then use the artifacts-
path variable to extract paths to task-specific artifact subdirectories. For example, the following code extracts the path
to the artifacts directory of a training task, and saves the path to a training_artifacts variable:

from os import path
training_artifacts = path.join(artifact_path, 'training')

Note

The artifacts path uses data store URLs, which are not necessarily local file paths (for example, s3://bucket/path).
Be careful not to use such paths with general file utilities.

9.2.4 Artifact URIs, versioning, and metadata

Artifacts have unique URIs in the form store://<type>/<project>/<key/path>[:tag]. The URI is automati-
cally generated by log_artifact and can be used as input to jobs, functions, pipelines, etc.

Artifacts are versioned. Each unique version has a unique IDs (uid) and can have a tag label.
When the tag is not specified, it uses the latest version.

Artifact metadata and objects can be accessed through the SDK or downloaded from the UI (as YAML files). They
host common and object specific metadata such as:

• Common metadata: name, project, updated, version info

• How they were produced (user, job, pipeline, etc.)

• Lineage data (sources used to produce that artifact)

• Information about formats, schema, sample data

• Links to other artifacts (e.g. a model can point to a chart)

• Type-specific attributes

Artifacts can be obtained via the SDK through type specific APIs or using generic artifact APIs such as:

• get_dataitem() - get the DataItem object for reading/downloading the artifact content

• get_store_resource() - get the artifact object

Example artifact URLs:

store://artifacts/default/my-table
store://artifacts/sk-project/train-model:e95f757e-7959-4d66-b500-9f6cdb1f0bc7
store://feature-sets/stocks/quotes:v2
store://feature-vectors/stocks/enriched-ticker
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9.2.5 See also

• Working with data and model artifacts

• models

• Logging datasets

Back to top
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CHAPTER

TEN

FUNCTIONS

All the executions in MLRun are based on Serverless Functions. The functions allow specifying code and all the
operational aspects (image, required packages, cpu/mem/gpu resources, storage, environment, etc.). The different
function runtimes take care of automatically transforming the code and spec to fully managed and elastic services over
Kubernetes, which saves significant operational overhead, addresses scalability and reduces infrastructure costs.

MLRun supports:

• Real-time functions for: serving, APIs, and stream processing (based on the high-performance Nuclio engine).

• Batch functions (based on Kubernetes jobs, Spark, Dask, Horovod, etc.)

Function objects are all inclusive (code, spec, API, and metadata definitions), which allows placing them in a shared
and versioned function market place. This means that different members of the team can produce or consume functions.
Each function is versioned and stored in the MLRun database with a unique hash code, and gets a new hash code upon
changes.

MLRun supports:

• Multiple types of runtimes.

• Configuring the function resources (replicas, CPU/GPU/memory limits, volumes, Spot vs. On-demand nodes,
pod priority, node affinity). See details in Managing job resources.

• Iterative tasks for automatic and distributed execution of many tasks with variable parameters (hyperparams).
See Hyperparam and iterative jobs.

• Horizontal scaling of functions across multiple containers. See Distributed and Parallel Jobs.

MLRun has an open public marketplace that stores many pre-developed functions for use in your projects.
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In this section:

10.1 Function runtimes

When you create an MLRun function you need to specify a runtime kind (e.g. kind='job'). Each runtime supports
its own specific attributes (e.g. Jars for Spark, Triggers for Nuclio, Auto-scaling for Dask, etc.).

MLRun supports real-time and batch runtimes.

Real-time runtimes:

• nuclio - real-time serverless functions over Nuclio

• serving - higher level real-time Graph (DAG) over one or more Nuclio functions

Batch runtimes:

• handler - execute python handler (used automatically in notebooks or for debug)

• local - execute a Python or shell program

• job - run the code in a Kubernetes Pod

• dask - run the code as a Dask Distributed job (over Kubernetes)

• mpijob - run distributed jobs and Horovod over the MPI job operator, used mainly for deep learning jobs

• spark - run the job as a Spark job (using Spark Kubernetes Operator)

• remote-spark - run the job on a remote Spark service/cluster (e.g. Iguazio Spark service)

Common attributes for Kubernetes based functions

All the Kubernetes based runtimes (Job, Dask, Spark, Nuclio, MPIJob, Serving) support a common set of spec attributes
and methods for setting the PODs:

function.spec attributes (similar to k8s pod spec attributes):

• volumes

• volume_mounts
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• env

• resources

• replicas

• image_pull_policy

• service_account

• image_pull_secret

common function methods:

• set_env(name, value)

• set_envs(env_vars)

• gpus(gpus, gpu_type)

• with_limits(mem, cpu, gpus, gpu_type)

• with_requests(mem, cpu)

• set_env_from_secret(name, secret, secret_key)

10.2 Configuring functions

MLRun Functions (function objects) can be created by using any of the following methods:

• new_function(): creates a function from code repository/archive.

• code_to_function(): creates a function from local or remote source code (single file) or from a notebook
(code file will be embedded in the function object).

• import_function(): imports a function from a local or remote YAML function-configuration file or from a
function object in the MLRun database (using a DB address of the format db://<project>/<name>[:<tag>])
or from the function marketplace (e.g. hub://describe). See MLRun Functions Marketplace.

When you create a function, you can:

• Use the save() function method to save a function object in the MLRun database.

• Use the export() method to save a YAML function-configuration to your preferred local or remote location.

• Use the run() method to execute a task.

• Use the as_step() method to convert a function to a Kubeflow pipeline step.

• Use the .deploy() method to build/deploy the function. (Deploy for batch functions builds the image and adds
the required packages. For online/real-time runtimes like nuclio and serving it also deploys it as an online
service.)

Functions are stored in the project and are versioned so you can always view previous code and go back to previous
functions if needed.

The general concepts described in this section are illustrated in the following figure:
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In this section

• Providing Function Code

• Specifying the function’s execution handler or command

• Function Runtimes

10.2.1 Providing Function Code

When using code_to_function() or new_function(), you can provide code in several ways:

• As part of the function object

• As part of the function image

• From the git/zip/tar archive into the function at runtime

Provide code as part of the function object

This method is great for small and single file functions or for using code derived from notebooks. This example uses
the mlrun code_to_function() method to create functions from code files or notebooks.

# create a function from py or notebook (ipynb) file, specify the default function␣
→˓handler
my_func = mlrun.code_to_function(name='prep_data', filename='./prep_data.py', kind='job',
image='mlrun/mlrun', handler='my_func')

For more on how to create functions from notebook code, see Converting notebook code to a function.
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Provide code as part of the function image

Providing code as part of the image is good for ensuring that the function image has the integrated code and dependen-
cies, and it avoids the overhead of loading code at runtime.

Use the deploy() method to build a function image with source code, dependencies, etc. Specify the build configu-
ration using the build_config() method.

# create a new job function from base image and archive + custom build commands
fn = mlrun.new_function('archive', kind='job', command='./myfunc.py')
fn.build_config(base_image='mlrun/mlrun', source='git://github.com/org/repo.git

→˓#master',
commands=["pip install pandas"])

# deploy (build the container with the extra build commands/packages)
fn.deploy()

# run the function (specify the function handler to execute)
run_results = fn.run(handler='my_func', params={"x": 100})

Alternatively, you can use a pre-built image:

# provide a pre-built image with your code and dependencies
fn = mlrun.new_function('archive', kind='job', command='./myfunc.py', image='some/pre-
→˓built-image:tag')

# run the function (specify the function handler to execute)
run_results = fn.run(handler='my_func', params={"x": 100})

You can use this option with new_function() method.

Provide code from a git, zip, tar archive into the function at runtime

This option is the most efficient when doing iterative development with multiple code files and packages. You can make
small code changes and re-run the job without building images, etc. You can use this option with the new_function()
method.

The local, job, mpijob and remote-spark runtimes support dynamic load from archive or file shares. (Other
runtimes will be added later.) Enable this by setting the spec.build.source=<archive> and spec.build.
load_source_on_run=True or simply by setting the source attribute in new_function). In the CLI, use the
--source flag.

fn = mlrun.new_function('archive', kind='job', image='mlrun/mlrun', command='./myfunc.py
→˓',

source='git://github.com/mlrun/ci-demo.git#master')
run_results = fn.run(handler='my_func', params={"x": 100})

See more details and examples on running jobs with code from Archives or shares.
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10.2.2 Specifying the function execution handler or command

The function is configured with code and dependencies, however you also need to set the main execution code either
by handler or command.

Handler

A handler is a method (not a script) that executes the function, for either a one-time run or ongoing online services.

Command

The command='./myfunc.py' specifies the command that is executed in the function container/workdir.

By default MLRun tries to execute python code with the specified command. For executing non-python code, set
mode="pass" (passthrough) and specify the full execution command, e.g.:

new_function(... command="bash main.sh --myarg xx", mode="pass")

If you need to add arguments in the command, use "mode=args" template ({..}) in the command to pass the task
parameters as arguments for the execution command, for example:

new_function(... command='mycode.py' --x {xparam}", mode="args")

where {xparam} is substituted with the value of the xparam parameter. It is possible to use argument templates also
when using mode="pass".

See also Execute non Python code and Inject parameters into command line.

10.3 Converting code to function

MLRun annotations are used to identify the code that needs to be converted into an MLRun function. They provide
non-intrusive hints which indicate which parts of your notebook should be considered as the code of the function.

Annotations start a code block using # mlrun: start-code and end a code block(s), with # mlrun: end-code.
Use the #mlrun: ignore to exclude items from the code qualified annotations. Make sure that the annotations
include anything required for the function to run.

# mlrun: start-code

def sub_handler():
return "hello world"

The # mlrun: ignore annotation enables you to exclude the cell from the function code.

# mlrun: ignore

# the handler in the code section below will not call this sub_handler
def sub_handler():

return "I will be ignored!"

def handler(context, event):
return sub_handler()

# mlrun: end-code
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Convert the function with mlrun.code_to_function and run the handler. Notice the returned value under results.

Note

Make sure to save the notebook before running mlrun.code_to_function so that the lateset changes will be reflected
in the function.

from mlrun import code_to_function

some_function = code_to_function('some-function-name', kind='job', code_output='.')
some_function.run(name='some-function-name', handler='handler', local=True)

> 2021-11-01 07:42:44,930 [info] starting run some-function-name␣
→˓uid=742e7d6e930c48f3a2f1d6175e971455 DB=http://mlrun-api:8080

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-11-01 07:42:45,214 [info] run executed, status=completed

<mlrun.model.RunObject at 0x7f3fc9ed81d0>

In this section

• Named annotations

• Multi section function

• Annotation’s position in code cell

• Guidelines

10.3.1 Named annotations

The # mlrun: start-code and # mlrun: end-code annotations can be used to convert different code sections
to different MLRun, functions in the same notebook. To do so add the name of the MLRun function to the end of the
annotation as shown in the example below.

# mlrun: start-code my-function-name

def handler(context, event):
return "hello from my-function"

# mlrun: end-code my-function-name

Convert the function and run the handler. Notice that the handler that is being used and that there is a change in the
returned value under results.

my_function = code_to_function('my-function-name', kind='job')
my_function.run(name='my-function-name', handler='handler', local=True)
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> 2021-11-01 07:42:53,892 [info] starting run my-function-name␣
→˓uid=e4bbc3cae21042439cc1c3cb9631751c DB=http://mlrun-api:8080

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-11-01 07:42:54,137 [info] run executed, status=completed

<mlrun.model.RunObject at 0x7f3fc9ac71d0>

Note

Make sure to use the name given to the code_to_function parameter (name='my-function-name' in the example
above) so that all relevant start-code and end-code annotations are included. If none of the annotations are marked
with the function’s name, all annotations without any name are used.

10.3.2 Multi section function

You can use the # mlrun: start-code and # mlrun: end-code annotations multiple times in a notebook since
the whole notebook is scanned. The annotations can be named like the following example, and they can be nameless.
If you choose nameless, remember all nameless annotations in the notebook are used.

# mlrun: start-code multi-section-function-name

function_name = "multi-section-function-name"

# mlrun: end-code multi-section-function-name

Any code between those sections are not included:

function_name = "I will be ignored!"

# mlrun: start-code multi-section-function-name

def handler(context, event):
return f"hello from {function_name}"

# mlrun: end-code multi-section-function-name

my_multi_section_function = code_to_function('multi-section-function-name', kind='job')
my_multi_section_function.run(name='multi-section-function-name', handler='handler',␣
→˓local=True)

> 2021-11-01 07:43:05,587 [info] starting run multi-section-function-name␣
→˓uid=9ac6a0e977a54980b657bae067c2242a DB=http://mlrun-api:8080
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<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-11-01 07:43:05,834 [info] run executed, status=completed

<mlrun.model.RunObject at 0x7f3fc9a24e10>

10.3.3 Annotation’s position in code cell

# mlrun: start-code and # mlrun: end-code annotations are relative to their positions inside the code block.
Notice how the assignments to function_name below # mlrun: end-code don’t override the assignment between
the annotations in the function’s context.

# mlrun: start-code part-cell-function

def handler(context, event):
return f"hello from {function_name}"

function_name = "part-cell-function"

# mlrun: end-code part-cell-function

function_name = "I will be ignored"

my_multi_section_function = code_to_function('part-cell-function', kind='job')
my_multi_section_function.run(name='part-cell-function', handler='handler', local=True)

> 2021-11-01 07:43:14,347 [info] starting run part-cell-function␣
→˓uid=5426e665c7bc4ba492e0a704c5555fb6 DB=http://mlrun-api:8080

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-11-01 07:43:14,628 [info] run executed, status=completed

<mlrun.model.RunObject at 0x7f3fc9a2bf50>
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10.3.4 Guidelines

• Make sure that every # mlrun: start-code has a corresponding # mlrun: end-code before the next #
mlrun: start-code in the notebook.

• Only one MLRun function can have a nameless annotation per notebook.

• Do not use multiple # mlrun: start-code nor multiple # mlrun: end-code annotations in a single code
cell. Only the first appearance of each is used.

• Using single annotations:

– Use a # mlrun: start-code alone, and all code blocks from the annotation to the end of the notebook
are included.

– Use a # mlrun: end-code alone, and all code blocks from the beginning of the notebook to the anno-
tation are included.

10.4 Using code from archives or file shares

In this section

• Archive URL options

• Run from zip using the CLI

• Using code from Git

• Using code from file share

• Inject parameters into command line

• Execute non-Python code

10.4.1 Archive URL options

• Git, for example: git://github.com/mlrun/something.git#master

• Zip/Tar archives, for example: https://github.com/mlrun/mlrun/raw/run-cli/examples/archive.zip

• File share, for example: /User/mycode (requires adding a file share to the function)

The archive is set as the working dir for the function and the file/params to execute should be set using the command
parameter (with the relative path inside the archive).

10.4.2 Run from zip using the CLI

!python -m mlrun run --name tst1 --watch --source https://github.com/mlrun/mlrun/raw/
→˓development/examples/archive.zip --handler handler --image mlrun/mlrun myfunc.py

> 2021-06-15 11:52:45,847 [warning] Failed resolving version info. Ignoring and using␣
→˓defaults
> 2021-06-15 11:52:48,460 [warning] Unable to parse server or client version. Assuming␣
→˓compatible: {'server_version': '0.6.4', 'client_version': 'unstable'}
> 2021-06-15 11:52:48,469 [info] starting run tst1 uid=ce4a3eab42ff43e0885d82ec27762949␣
→˓DB=http://mlrun-api:8080

(continues on next page)
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(continued from previous page)

> 2021-06-15 11:52:48,612 [info] Job is running in the background, pod: tst1-6zpsv
> 2021-06-15 11:52:51,885 [info] extracting source from https://github.com/mlrun/mlrun/
→˓raw/development/examples/archive.zip to /mlrun/code
Run: tst1 (uid=ce4a3eab42ff43e0885d82ec27762949)
my line
got text: some text
> 2021-06-15 11:52:51,957 [info] run executed, status=completed
final state: completed
> 2021-06-15 11:52:54,715 [info] run executed, status=completed

10.4.3 Using code from Git

import mlrun
from mlrun.platforms import auto_mount
fn = mlrun.new_function('archive', kind='job', image='mlrun/mlrun', command='./myfunc.py
→˓',

source='git://github.com/mlrun/ci-demo.git#master')
run = fn.run(handler='my_func')

> 2021-06-15 11:58:59,002 [info] starting run archive-my_func␣
→˓uid=0b6195fbf1844880a829d61505bd9a38 DB=http://mlrun-api:8080
> 2021-06-15 11:58:59,468 [info] Job is running in the background, pod: archive-my-func-
→˓8frkp
> 2021-06-15 11:59:02,726 [info] extracting source from git://github.com/mlrun/ci-demo.
→˓git#master to /mlrun/code
Run: archive-my_func (uid=0b6195fbf1844880a829d61505bd9a38)
Params: p1=1, p2=a-string
> 2021-06-15 11:59:02,764 [info] running function
> 2021-06-15 11:59:02,797 [info] run executed, status=completed
final state: completed

<IPython.core.display.HTML object>

to track results use .show() or .logs() or in CLI:
!mlrun get run 0b6195fbf1844880a829d61505bd9a38 --project default , !mlrun logs␣
→˓0b6195fbf1844880a829d61505bd9a38 --project default
> 2021-06-15 11:59:05,633 [info] run executed, status=completed

10.4.4 Using code from file share

import mlrun
fn = mlrun.new_function('archive', kind='job', image='mlrun/mlrun', command='./code.py',

source='/User/sample2')
# add shared volume mount so the function will have access to the mounted code
fn.apply(auto_mount())
run = fn.run(handler='handler')
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> 2021-04-27 13:08:58,586 [info] starting run archive-handler␣
→˓uid=a09a42808aff4551b2ba29c701f78395 DB=http://mlrun-api:8080
> 2021-04-27 13:08:58,801 [info] Job is running in the background, pod: archive-handler-
→˓74crq
extracting source from /User/sample2 to ./
cwd=/mlrun, workdir=None
Run: archive-handler (uid=a09a42808aff4551b2ba29c701f78395)
my line, bla bla
> 2021-04-27 13:09:05,095 [info] run executed, status=completed
final state: completed

<IPython.core.display.HTML object>

to track results use .show() or .logs() or in CLI:
!mlrun get run a09a42808aff4551b2ba29c701f78395 --project default , !mlrun logs␣
→˓a09a42808aff4551b2ba29c701f78395 --project default
> 2021-04-27 13:09:08,022 [info] run executed, status=completed

<mlrun.model.RunObject at 0x7eff90ab77d0>

10.4.5 Inject parameters into command line

The function command parameter is the command that executes inside the container (the archive path is set as the
working directory). You can pass arguments in the command and also inject the job/task parameters into the command
at runtime (by using {} around the parameter).

For example, define a function with the command template and pass a parameter during the run:

fn = mlrun.new_function('withargs', kind='job', image='mlrun/mlrun', command="main.py --
→˓myarg {myarg}",

source='git://github.com/org/repo')
run = fn.run(params={'myarg': 'xx'})

10.4.6 Execute non-Python code

By default MLRun tries to execute Python code. You can run any other code by specifying the Pass (passthrough)
mode (mode="pass"). In the pass mode the command is used as is, for example:

fn = mlrun.new_function('withargs', kind='job', image='mlrun/mlrun', command="bash main.
→˓sh --myarg {myarg}",

source='git://github.com/org/repo', mode='pass')
run = fn.run(params={'myarg': 'xx'})
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10.5 Attach storage to functions

In the vast majority of cases, an MLRun function requires access to storage. This storage might be used to provide
inputs to the function including data-sets to process or data-streams that contain input events. Typically, storage is used
to store function outputs and result artifacts. For example, trained models or processed data-sets.

Since MLRun functions can be distributed and executed in Kubernetes pods, the storage used would typically be shared,
and execution pods would need some added configuration options applied to them so that the function code is able to
access the designated storage. These configurations might be k8s volume mounts, specific environment variables that
contain configuration and credentials, and other configuration of security settings. These storage configurations are not
applicable to functions running locally in the development environment, since they are executed in the local context.

The common types of shared storage are:

1. v3io storage through API — When running as part of the Iguazio system, MLRun has access to the system’s v3io
storage through paths such as v3io:///projects/my_projects/file.csv. To enable this type of access,
several environment variables need to be configured in the pod that provide the v3io API URL and access keys.

2. v3io storage through FUSE mount — Some tools cannot utilize the v3io API to access it and need basic filesys-
tem semantics. For that purpose, v3io provides a FUSE (Filesystem in user-space) driver that can be used to
mount v3io containers as specific paths in the pod itself. For example /User. To enable this, several specific
volume mount configurations need to be applied to the pod spec.

3. NFS storage access — When MLRun is deployed as open-source, independent of Iguazio, the deployment auto-
matically adds a pod running NFS storage. To access this NFS storage through pods, a kubernetes pvc mount is
needed.

4. Others — As use-cases evolve, other cases of storage access may be needed. This will require various configu-
rations to be applied to function execution pods.

MLRun attempts to offload this storage configuration task from the user by automatically applying the most common
storage configuration to functions. As a result, most cases do not require any additional storage configurations before
executing a function as a Kubernetes pod. The configurations applied by MLRun are:

• In an Iguazio system, apply configurations for v3io access through the API.

• In an open-source deployment where NFS is configured, apply configurations for pvc access to NFS storage.

This MLRun logic is referred to as auto-mount.

In this section

• Disabling auto-mount

• Modifying the auto-mount default configuration

10.5.1 Disabling auto-mount

In cases where the default storage configuration does not fit the function needs, MLRun allows for function spec mod-
ifiers to be manually applied to functions. These modifiers can add various configurations to the function spec, adding
environment variables, mounts and additional configurations. MLRun also provides a set of common modifiers that
can be used to apply storage configurations. These modifiers can be applied by using the .apply() method on the
function and adding the modifier to apply. You can see some examples of this later in this page.

When a different storage configuration is manually applied to a function, MLRun’s auto-mount logic is disabled.
This prevents conflicts between configurations. The auto-mount logic can also be disabled by setting func.spec.
disable_auto_mount = True on any MLRun function.
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10.5.2 Modifying the auto-mount default configuration

The default auto-mount behavior applied by MLRun is controlled by setting MLRun configuration parameters. For
example, the logic can be set to automatically mount the v3io FUSE driver on all functions, or perform pvc mount for
NFS storage on all functions. The following code demonstrates how to apply the v3io FUSE driver by default:

# Change MLRun auto-mount configuration
import mlrun.mlconf

mlrun.mlconf.storage.auto_mount_type = "v3io_fuse"

Each of the auto-mount supported methods applies a specific modifier function. The supported methods are:

• v3io_credentials— apply v3io credentials needed for v3ioAPI usage. Applies the v3io_cred()modifier.

• v3io_fuse — create Fuse driver mount. Applies the mount_v3io() modifier.

• pvc — create a pvc mount. Applies the mount_pvc() modifier.

• auto — the default auto-mount logic as described above (either v3io_credentials or pvc).

• none — perform no auto-mount (same as using disable_auto_mount = True).

The modifier functions executed by auto-mount can be further configured by specifying their parameters. These can
be provided in the storage.auto_mount_params configuration parameters. Parameters can be passed as a string
made of key=value pairs separated by commas. For example, the following code runs a pvc mount with specific
parameters:

mlrun.mlconf.storage.auto_mount_type = "pvc"
pvc_params = {

"pvc_name": "my_pvc_mount",
"volume_name": "pvc_volume",
"volume_mount_path": "/mnt/storage/nfs",

}
mlrun.mlconf.storage.auto_mount_params = ",".join(

[f"{key}={value}" for key, value in pvc_params.items()]
)

Alternatively, the parameters can be provided as a base64-encoded JSON object, which can be useful when passing
complex parameters or strings that contain special characters:

pvc_params_str = base64.b64encode(json.dumps(pvc_params).encode())
mlrun.mlconf.storage.auto_mount_params = pvc_params_str

10.6 Images and their usage in MLRun

Every release of MLRun includes several images for different usages. The build and the infrastructure images are
described, and located, in the README. They are also published to dockerhub and quay.io.

In this section

• Using images

• MLRun images and how to build them

• MLRun images and external docker images
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10.6.1 Using images

See Kubernetes Jobs & Images.

10.6.2 MLRun images and how to build them

See README.

10.6.3 MLRun images and external docker images

There is no difference in the usage between the MLRun images and external docker images. However:

• MLRun images resolve auto tags: If you specify image="mlrun/mlrun" the API fills in the tag by the client
version, e.g. changes it to mlrun/mlrun:1.1.1. So, if the client gets upgraded you’ll automatically get a new
image tag.

• Where the data node registry exists, MLRun: Appends the registry prefix, so the image loads from the datan-
ode registry. This pulls the image more quickly, and also supports air-gapped sites. When you specify an
MLRun image, for example mlrun/mlrun:1.1.1, the actual image used is similar to datanode-registry.
iguazio-platform.app.vm/mlrun/mlrun:1.1.1.

These characteristics are great when you’re working in a POC or development environment. But MLRun typically
upgrades packages as part of the image, and therefore the default MLRun images can break your product flow.

Working with images in production

For production you should create your own images to ensure that the image is fixed.

• Pin the image tag, e.g. image="mlrun/mlrun:1.1.1". This maintains the image tag at 0.10.0 even when the
client is upgraded. Otherwise, an upgrade of the client would also upgrade the image. (If you specify an external
(not MLRun images) docker image, like python, the result is the docker/k8s default behavior, which defaults to
latest when the tag is not provided.)

• Pin the versions of requirements, again to avoid breakages, e.g. pandas==1.4.0. (If you only specify the
package name, e.g. pandas, then pip/conda (python’s package managers) just pick up the latest version.)
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CHAPTER

ELEVEN

FUNCTIONS MARKETPLACE

This section demonstrates how to import a function from the marketplace into your project, and provides some basic
instructions on how to run the function and view the results.

In this section

• Overview

• Functions Marketplace

• Searching for functions

• Setting the project configuration

• Loading functions from the marketplace

• View the function params

• Running the function

11.1 Functions Marketplace

MLRun marketplace has a wide range of functions that can be used for a variety of use cases. There are functions for
ETL, data preparation, training (ML & Deep learning), serving, alerts and notifications and more. Each function has a
docstring that explains how to use it. In addition, the functions are associated with categories to make it easier for you
to find the relevant one.

Functions can be easily imported into your project and therefore help you to speed up your development cycle by reusing
built-in code.

11.2 Searching for functions

The Marketplace is located here. You can search and filter the categories and kinds to find a function that meets your
needs.
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11.3 Setting the project configuration

The first step for each project is to set the project name and path:

from os import path, getenv
from mlrun import new_project

project_name = 'load-func'
project_path = path.abspath('conf')
project = new_project(project_name, project_path, init_git=True)

print(f'Project path: {project_path}\nProject name: {project_name}')
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11.3.1 Set the artifacts path

The artifact path is the default path for saving all the artifacts that the functions generate:

from mlrun import run_local, mlconf, import_function, mount_v3io

# Target location for storing pipeline artifacts
artifact_path = path.abspath('jobs')
# MLRun DB path or API service URL
mlconf.dbpath = mlconf.dbpath or 'http://mlrun-api:8080'

print(f'Artifacts path: {artifact_path}\nMLRun DB path: {mlconf.dbpath}')

11.4 Loading functions from the Marketplace

Run project.set_function to load a functions. set_function updates or adds a function object to the project.

set_function(func, name='', kind='', image=None, with_repo=None)

Parameters:

• func — function object or spec/code url.

• name — name of the function (under the project).

• kind — runtime kind e.g. job, nuclio, spark, dask, mpijob. Default: job.

• image — docker image to be used, can also be specified in the function object/yaml.

• with_repo — add (clone) the current repo to the build source.

Returns: project object

For more information see the set_function()API documentation.

11.4.1 Load function example

This example loads the describe function. This function analyzes a csv or parquet file for data analysis.

project.set_function('hub://describe', 'describe')

Create a function object called my_describe:

my_describe = project.func('describe')

11.5 View the function params

To view the parameters, run the function with .doc():

my_describe.doc()
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function: describe
describe and visualizes dataset stats
default handler: summarize
entry points:
summarize: Summarize a table
context(MLClientCtx) - the function context, default=
table(DataItem) - MLRun input pointing to pandas dataframe (csv/parquet file␣

→˓path), default=
label_column(str) - ground truth column label, default=None
class_labels(List[str]) - label for each class in tables and plots, default=[]
plot_hist(bool) - (True) set this to False for large tables, default=True
plots_dest(str) - destination folder of summary plots (relative to artifact_

→˓path), default=plots
update_dataset - when the table is a registered dataset update the charts in-

→˓place, default=False

11.6 Running the function

Use the run method to to run the function.

When working with functions pay attention to the following:

• Input vs. params — for sending data items to a function, send it via “inputs” and not as params.

• Working with artifacts — Artifacts from each run are stored in the artifact_path, which can be set globally
with the environment variable (MLRUN_ARTIFACT_PATH) or with the config. If it’s not already set you can
create a directory and use it in the runs. Using {{run.uid}} in the path creates a unique directory per run.
When using pipelines you can use the {{workflow.uid}} template option.

This example runs the describe function. This function analyzes a dataset (in this case it’s a csv file) and generates
HTML files (e.g. correlation, histogram) and saves them under the artifact path.

DATA_URL = 'https://s3.wasabisys.com/iguazio/data/iris/iris_dataset.csv'

my_describe.run(name='describe',
inputs={'table': DATA_URL},
artifact_path=artifact_path)

11.6.1 Saving the artifacts in a unique folder for each run

out = mlconf.artifact_path or path.abspath('./data')
my_describe.run(name='describe',

inputs={'table': DATA_URL},
artifact_path=path.join(out, '{{run.uid}}'))
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11.6.2 Viewing the jobs & the artifacts

There are few options to view the outputs of the jobs we ran:

• In Jupyter the result of the job is displayed in the Jupyter notebook. When you click on the artifacts it displays
its content in Jupyter.

• In the MLRun UI, under the project name, you can view the job that was running as well as the artifacts it
generated.
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JOBS

A job is simply something that you would like to run once to completion. For example, running a simple Python script
can be similar to a job in that the script runs once to completion and then returns. In an ML workflow, sometimes
running a simple Python script is not enough and additional functionality is required. For example giving cluster
resources, specifying dependencies and a Docker image, integrating with Git repo, etc.

In this section

12.1 Jobs overview

In this section

• Create a job

• Run a job locally

• Run a job on the cluster

• Configure the job

12.1.1 Create a job

MLRun can add all of the above features, and more, when running a job. To showcase this, the following job runs the
code below, which resides in a file titled code.py:

def hello(context):
print("You just ran a job!")

To create the job, use the code_to_function syntax and specify the kind like below:

import mlrun

job = mlrun.code_to_function(
name="my-job", # Name of the job (displayed in console and UI)
filename="code.py", # Python file or Jupyter notebook to run
kind="job", # Run as a job
image="mlrun/mlrun", # Use this Docker image
handler="hello" # Execute the function hello() within code.py

)

Read more about the code_to_function() syntax.
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12.1.2 Run a job locally

When prototyping, it is often useful to test the job locally on your laptop or Jupyter environment before running on
the larger cluster. In this way you can ensure that that the job does what you want without using cluster resources.

To do this, run the job and specify the local=True flag:

run = job.run(local=True)

12.1.3 Run a job on the cluster

Finally, you can execute your job using cluster resources. This is usually the end goal when creating a job because it
gives you much more flexibility into the configuration of the job.

To do this, run the job and specify the local=False flag or omit the local flag altogether:

run = job.run(local=False)

12.1.4 Configure the job

There are many configurations you can add to the Job. Read more about them here:

• Managing job resources

• Use alternative runtimes including Dask, Horovod, Spark

• Scheduled jobs

• Attach storage to a job

• Run a Job with a Git repo

12.2 MLRun execution context

After running a job, you need to be able to track it. To gain the maximum value, MLRun uses the job context object
inside the code. This provides access to job metadata, parameters, inputs, secrets, and API for logging and monitoring
the results, as well as log text, files, artifacts, and labels.

• If context is specified as the first parameter in the function signature, MLRun injects the current job context
into it.

• Alternatively, if it does not run inside a function handler (e.g. in Python main or Notebook) you can obtain the
context object from the environment using the get_or_create_ctx() function.

Common context methods:

• get_secret(key: str) — get the value of a secret

• logger.info("started experiment..") — textual logs

• log_result(key: str, value) — log simple values

• set_label(key, value) — set a label tag for that task

• log_artifact(key, body=None, local_path=None, ...) — log an artifact (body or local file)

• log_dataset(key, df, ...) — log a dataframe object
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• log_model(key, ...) — log a model object

Example function and usage of the context object:

from mlrun.artifacts import ChartArtifact
import pandas as pd

def my_job(context, p1=1, p2="x"):
# load MLRUN runtime context (will be set by the runtime framework)

# get parameters from the runtime context (or use defaults)

# access input metadata, values, files, and secrets (passwords)
print(f"Run: {context.name} (uid={context.uid})")
print(f"Params: p1={p1}, p2={p2}")
print("accesskey = {}".format(context.get_secret("ACCESS_KEY")))
print("file\n{}\n".format(context.get_input("infile.txt", "infile.txt").get()))

# Run some useful code e.g. ML training, data prep, etc.

# log scalar result values (job result metrics)
context.log_result("accuracy", p1 * 2)
context.log_result("loss", p1 * 3)
context.set_label("framework", "sklearn")

# log various types of artifacts (file, web page, table), will be versioned and␣
→˓visible in the UI

context.log_artifact(
"model",
body=b"abc is 123",
local_path="model.txt",
labels={"framework": "xgboost"},

)
context.log_artifact(

"html_result", body=b"<b> Some HTML <b>", local_path="result.html"
)

# create a chart output (will show in the pipelines UI)
chart = ChartArtifact("chart")
chart.labels = {"type": "roc"}
chart.header = ["Epoch", "Accuracy", "Loss"]
for i in range(1, 8):

chart.add_row([i, i / 20 + 0.75, 0.30 - i / 20])
context.log_artifact(chart)

raw_data = {
"first_name": ["Jason", "Molly", "Tina", "Jake", "Amy"],
"last_name": ["Miller", "Jacobson", "Ali", "Milner", "Cooze"],
"age": [42, 52, 36, 24, 73],
"testScore": [25, 94, 57, 62, 70],

}
df = pd.DataFrame(raw_data, columns=["first_name", "last_name", "age", "testScore"])
context.log_dataset("mydf", df=df, stats=True)

Example of creating the context objects from the environment:
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if __name__ == "__main__":
context = mlrun.get_or_create_ctx('train')
p1 = context.get_param('p1', 1)
p2 = context.get_param('p2', 'a-string')
# do something
context.log_result("accuracy", p1 * 2)
# commit the tracking results to the DB (and mark as completed)
context.commit(completed=True)

Note that MLRun context is also a python context and can be used in a with statement (eliminating the need for
commit).

if __name__ == "__main__":
with mlrun.get_or_create_ctx('train') as context:

p1 = context.get_param('p1', 1)
p2 = context.get_param('p2', 'a-string')
# do something
context.log_result("accuracy", p1 * 2)

12.3 Running a job

MLRun batch function objects support a run() method for invoking a job over them. The run method accepts various
parameters such as name, handler, params, inputs, schedule, etc. Alternatively, you can pass a Task object (see:
new_task()) that holds all of the parameters plus the advanced options.

Run/simulate functions locally:

Functions can also run and be debugged locally by using the local runtime or by setting the local=True parameter
in the run() method (for batch functions).

Functions can host multiple methods (handlers). You can set the default handler per function. You need to specify
which handler you intend to call in the run command.

You can pass parameters (arguments) or data inputs (such as datasets, feature-vectors, models, or files) to the
functions through the run method.

• Inside the function you can access the parameters/inputs by simply adding them as parameters to the function or
you can get them from the context object (using get_param() and get_input()).

• Various data objects (files, tables, models, etc.) are passed to the function as data item objects. You can pass data
objects using the inputs dictionary argument, where the dictionary keys match the function’s handler argument
names and the MLRun data urls are provided as the values. The data is passed into the function as a DataItem
object that handles data movement, tracking and security in an optimal way. Read more about data objects in
Data stores.

run_results = fn.run(params={“label_column”: “label”}, inputs={‘data’: data_url})

MLRun also supports iterative jobs that can run and track multiple child jobs (for hyperparameter tasks, AutoML, etc.).
See Hyperparameter tuning optimization for details and examples.

The run() command returns a run object that you can use to track the job and its results. If you pass the parameter
watch=True (default) the run() command blocks until the job completes.

Run object has the following methods/properties:
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• uid() — returns the unique ID.

• state() — returns the last known state.

• show() — shows the latest job state and data in a visual widget (with hyperlinks and hints).

• outputs — returns a dictionary of the run results and artifact paths.

• logs(watch=True) — returns the latest logs. Use Watch=False to disable the interactive mode in running
jobs.

• artifact(key) — returns an artifact for the provided key (as DataItem object).

• output(key) — returns a specific result or an artifact path for the provided key.

• wait_for_completion() — wait for async run to complete

• refresh() — refresh run state from the db/service

• to_dict(), to_yaml(), to_json() — converts the run object to a dictionary, YAML, or JSON format (re-
spectively).

You can view the job details, logs, and artifacts in the UI. When you first open the Monitor Jobs tab it displays the last
jobs that ran and their data. Click a job name to view its run history, and click a run to view more of the run’s data.

See full details and examples in Functions.

12.4 Kubernetes runtime

This topic describes running a kubernetes-based job using shared data, and building custom container images.

In this section

• Define a new function and its dependencies

• Convert the code to a serverless job

• Deploy (build) the function container

• Run the function on the cCluster

• Create and run a Kubeflow pipeline
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12.4.1 Define a new function and its dependencies

Define a single serverless function with two handlers, one for training and one for validation.

import mlrun

> 2021-01-24 00:04:38,841 [warning] Failed resolving version info. Ignoring and using␣
→˓defaults
> 2021-01-24 00:04:40,691 [warning] Unable to parse server or client version. Assuming␣
→˓compatible: {'server_version': 'unstable', 'client_version': 'unstable'}

import time
import pandas as pd
from mlrun.artifacts import get_model, update_model

def training(
context,
p1: int = 1,
p2: int = 2

) -> None:
"""Train a model.

:param context: The runtime context object.
:param p1: A model parameter.
:param p2: Another model parameter.
"""
# access input metadata, values, and inputs
print(f'Run: {context.name} (uid={context.uid})')
print(f'Params: p1={p1}, p2={p2}')
context.logger.info('started training')

# <insert training code here>

# log the run results (scalar values)
context.log_result('accuracy', p1 * 2)
context.log_result('loss', p1 * 3)

# add a label/tag to this run
context.set_label('category', 'tests')

# log a simple artifact + label the artifact
# If you want to upload a local file to the artifact repo add src_path=<local-path>
context.log_artifact('somefile',

body=b'abc is 123',
local_path='myfile.txt')

# create a dataframe artifact
df = pd.DataFrame([{'A':10, 'B':100}, {'A':11,'B':110}, {'A':12,'B':120}])
context.log_dataset('mydf', df=df)

# Log an ML Model artifact, add metrics, params, and labels to it
# and place it in a subdir ('models') under artifacts path
context.log_model('mymodel', body=b'abc is 123',

(continues on next page)

182 Chapter 12. Jobs



mlrun, Release UNKNOWN

(continued from previous page)

model_file='model.txt',
metrics={'accuracy':0.85}, parameters={'xx':'abc'},
labels={'framework': 'xgboost'},
artifact_path=context.artifact_subpath('models'))

def validation(
context,
model: mlrun.DataItem

) -> None:
"""Model validation.

Dummy validation function.

:param context: The runtime context object.
:param model: The extimated model object.
"""
# access input metadata, values, files, and secrets (passwords)
print(f'Run: {context.name} (uid={context.uid})')
context.logger.info('started validation')

# get the model file, class (metadata), and extra_data (dict of key: DataItem)
model_file, model_obj, _ = get_model(model)

# update model object elements and data
update_model(model_obj, parameters={'one_more': 5})

print(f'path to local copy of model file - {model_file}')
print('parameters:', model_obj.parameters)
print('metrics:', model_obj.metrics)
context.log_artifact('validation',

body=b'<b> validated </b>',
format='html')

The following end-code annotation tells MLRun to stop parsing the notebook from this cell. Do not remove this cell:

# mlrun: end-code

12.4.2 Convert the code to a serverless job

Create a function that defines the runtime environment (type, code, image, . . . ) and run() a job or experiment using
that function. In each run, you can specify the function, inputs, parameters/hyper-parameters, etc.

Use the job runtime for running container jobs, or alternatively use another distributed runner like MpiJob, Spark,
Dask, and Nuclio.

Setting up the environment

project_name, artifact_path = mlrun.set_environment(project='jobs-demo', artifact_path='.
→˓/data/{{run.uid}}')
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Define the cluster jobs, build images, and set dependencies

To use the function in a cluster you need to package the code and its dependencies.

The code_to_function call automatically generates a function object from the current notebook (or specified file)
with its list of dependencies and runtime configuration. In this example the code depends on the pandas package, so
it’s specified in the code_to_function call.

# create an ML function from the notebook, attach it to iguazio data fabric (v3io)
trainer = mlrun.code_to_function(name='my-trainer', kind='job', image='mlrun/mlrun',␣
→˓requirements=['pandas'])

The functions need a shared storage media (file or object) to pass and store artifacts.

You can add Kubernetes resources like volumes, environment variables, secrets, cpu/mem/gpu, etc. to a function.

mlrun uses KubeFlow modifiers (apply) to configure resources. You can build your own resources or use predefined
resources e.g. AWS resources.

The example above uses built-in images. When you move to production, use specific tags. For more details on built-in
and custom images, see MLRun images and external docker images.

Option 1: Using file volumes for artifacts

MLRun automatically applies the most common storage configuration to functions. As a result, most cases do not re-
quire any additional storage configurations before executing a function. See more details in Attach storage to functions.

If you’re using the Iguazio MLOps platform, and want to configure manually, use the mount_v3io() auto-mount
modifier. If you’re using another k8s PVC volume, use the mlrun.platforms.mount_pvc(..) modifier with the
required parameters.

This example uses the auto_mount() modifier. It auto-selects between the k8s PVC volume and the Iguazio data
fabric. You can set the PVC volume configuration with the env var below or with the auto_mount params:

MLRUN_PVC_MOUNT=<pvc-name>:<mount-path>

If you apply mount_v3io() or auto_mount() when running the function in the MLOps platform, it attaches the
function to Iguazio’s real-time data fabric (mounted by default to home of the current user).

Note: If the notebook is not on the managed platform (it’s running remotely) you might need to use secrets.

For the current training function, run:

# for PVC volumes set the env var for PVC: MLRUN_PVC_MOUNT=<pvc-name>:<mount-path>, pass␣
→˓the relevant parameters
from mlrun.platforms import auto_mount
trainer.apply(auto_mount())

<mlrun.runtimes.kubejob.KubejobRuntime at 0x7fdf29b1c190>
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Option 2: Using AWS S3 for artifacts

When using AWS, you can use S3. See more details in S3.

12.4.3 Deploy (build) the function container

The deploy() command builds a custom container image (creates a cluster build job) from the outlined function
dependencies.

If a pre-built container image already exists, pass the image name instead. The code and params can be updated per
run without building a new image.

The image is stored in a container repository. By default it uses the repository configured on the MLRun API ser-
vice. You can specify your own docker registry by first creating a secret, and adding that secret name to the build
configuration:

kubectl create -n <namespace> secret docker-registry my-docker --docker-server=https:/
/index.docker.io/v1/ --docker-username=<your-user> --docker-password=<your-password>
--docker-email=<your-email>

And then run this:

trainer.build_config(image='target/image:tag', secret='my_docker')

trainer.deploy(with_mlrun=False)

> 2021-01-24 00:05:18,384 [info] starting remote build, image: .mlrun/func-jobs-demo-my-
→˓trainer-latest
INFO[0020] Retrieving image manifest mlrun/mlrun:unstable
INFO[0020] Retrieving image manifest mlrun/mlrun:unstable
INFO[0021] Built cross stage deps: map[]
INFO[0021] Retrieving image manifest mlrun/mlrun:unstable
INFO[0021] Retrieving image manifest mlrun/mlrun:unstable
INFO[0021] Executing 0 build triggers
INFO[0021] Unpacking rootfs as cmd RUN pip install pandas requires it.
INFO[0037] RUN pip install pandas
INFO[0037] Taking snapshot of full filesystem...
INFO[0050] cmd: /bin/sh
INFO[0050] args: [-c pip install pandas]
INFO[0050] Running: [/bin/sh -c pip install pandas]
Requirement already satisfied: pandas in /usr/local/lib/python3.7/site-packages (1.2.0)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/site-packages␣
→˓(from pandas) (2020.5)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/site-
→˓packages (from pandas) (2.8.1)
Requirement already satisfied: numpy>=1.16.5 in /usr/local/lib/python3.7/site-packages␣
→˓(from pandas) (1.19.5)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/site-packages (from␣
→˓python-dateutil>=2.7.3->pandas) (1.15.0)
WARNING: You are using pip version 20.2.4; however, version 21.0 is available.
You should consider upgrading via the '/usr/local/bin/python -m pip install --upgrade pip
→˓' command.
INFO[0051] Taking snapshot of full filesystem...
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True

12.4.4 Run the function on the cluster

Use with_code to inject the latest code into the function (without requiring a new build).

trainer.with_code()

<mlrun.runtimes.kubejob.KubejobRuntime at 0x7fdf29b1c190>

# run our training task with params
train_run = trainer.run(name='my-training', handler='training', params={'p1': 9})

> 2021-01-24 00:09:14,760 [info] starting run my-training␣
→˓uid=30b8131285a74f87b16d957fabc5fac3 DB=http://mlrun-api:8080
> 2021-01-24 00:09:14,928 [info] Job is running in the background, pod: my-training-lhtxt
> 2021-01-24 00:09:18,972 [warning] Unable to parse server or client version. Assuming␣
→˓compatible: {'server_version': 'unstable', 'client_version': 'unstable'}
Run: my-training (uid=30b8131285a74f87b16d957fabc5fac3)
Params: p1=9, p2=2
> 2021-01-24 00:09:19,050 [info] started training
> 2021-01-24 00:09:19,299 [info] run executed, status=completed
final state: completed

<IPython.core.display.HTML object>

to track results use .show() or .logs() or in CLI:
!mlrun get run 30b8131285a74f87b16d957fabc5fac3 --project jobs-demo , !mlrun logs␣
→˓30b8131285a74f87b16d957fabc5fac3 --project jobs-demo
> 2021-01-24 00:09:21,253 [info] run executed, status=completed

# running validation, use the model result from the previous step
model = train_run.outputs['mymodel']
validation_run = trainer.run(name='validation', handler='validation', inputs={'model':␣
→˓model}, watch=True)

> 2021-01-24 00:09:21,259 [info] starting run validation␣
→˓uid=c757ffcdc36d4412b4bcba1df75f079d DB=http://mlrun-api:8080
> 2021-01-24 00:09:21,536 [info] Job is running in the background, pod: validation-dwd78
> 2021-01-24 00:09:25,570 [warning] Unable to parse server or client version. Assuming␣
→˓compatible: {'server_version': 'unstable', 'client_version': 'unstable'}
Run: validation (uid=c757ffcdc36d4412b4bcba1df75f079d)
> 2021-01-24 00:09:25,719 [info] started validation
path to local copy of model file - /User/data/30b8131285a74f87b16d957fabc5fac3/models/
→˓model.txt
parameters: {'xx': 'abc', 'one_more': 5}
metrics: {'accuracy': 0.85}
> 2021-01-24 00:09:25,873 [info] run executed, status=completed
final state: completed
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<IPython.core.display.HTML object>

to track results use .show() or .logs() or in CLI:
!mlrun get run c757ffcdc36d4412b4bcba1df75f079d --project jobs-demo , !mlrun logs␣
→˓c757ffcdc36d4412b4bcba1df75f079d --project jobs-demo
> 2021-01-24 00:09:27,647 [info] run executed, status=completed

12.4.5 Create and run a Kubeflow pipeline

Kubeflow pipelines are used for workflow automation, creating a graph of functions and their specified parameters,
inputs, and outputs.

You can chain the outputs and inputs of the pipeline steps, as illustrated below.

import kfp
from kfp import dsl
from mlrun import run_pipeline
from mlrun import run_function, deploy_function

@dsl.pipeline(
name = 'job test',
description = 'demonstrating mlrun usage'

)
def job_pipeline(

p1: int = 9
) -> None:

"""Define our pipeline.

:param p1: A model parameter.
"""

train = run_function('my-trainer',
handler='training',
params={'p1': p1},
outputs=['mymodel'])

validate = run_function('my-trainer',
handler='validation',
inputs={'model': train.outputs['mymodel']},
outputs=['validation'])

Running the pipeline

Pipeline results are stored at the artifact_path location. The artifact path for workflows can be one of:

• The project’s artifact_path (set by project.spec.artifact_path = '<some path>'). MLRun adds
/{{workflow.uid}} to the path if it does not already include it.

• MLRun’s default artifact-path, if set. MLRun adds /{{workflow.uid}}’ to the path if it does not already
include it.

• The artifact_path as passed to the specific call for run(), as shown below. In this case, MLRun does not
modify the user-provided path.
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If you want to customize the path, per workflow, use:

artifact_path = 'v3io:///users/admin/kfp/{{workflow.uid}}/'

arguments = {'p1': 8}
run_id = run_pipeline(job_pipeline, arguments, experiment='my-job', artifact_
→˓path=artifact_path)

> 2021-01-24 00:09:46,670 [info] using in-cluster config.

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-01-24 00:09:46,940 [info] Pipeline run id=26ac4209-8505-47a3-b807-e9c51061bf0d,␣
→˓check UI or DB for progress

from mlrun import wait_for_pipeline_completion, get_run_db
wait_for_pipeline_completion(run_id)
db = get_run_db().list_runs(project=project_name, labels=f'workflow={run_id}').show()

<IPython.core.display.HTML object>

Viewing the pipeline on the dashboard (UI)

In the Projects > Jobs and Workflows > Monitor Workflows tab, press the workflow name to view a graph of the
workflow. Press any step to open a pane with full details of the step: either the job’s overview, inputs, artifacts, etc.; or
the deploy / build function’s overview, code, and log. The color of the step, after pressing, indicates the status. See the
status description in the Log tab. The graph is refreshed while the pipeline is running.

Back to top
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12.5 Using tasks with secrets

MLRun uses the concept of Tasks to encapsulate runtime parameters. Tasks are used to specify execution context such
as hyper-parameters. They can also be used to pass details about secrets that are going to be used in the runtime. This
allows for control over specific secrets passed to runtimes, and support for the various MLRun secret providers.

To pass secret parameters, use the Task’s with_secrets() function. For example, the following command passes
specific project-secrets to the execution context:

function = mlrun.code_to_function(
name="secret_func",
filename="my_code.py",
handler="test_function",
kind="job",
image="mlrun/mlrun"

)
task = mlrun.new_task().with_secrets("kubernetes", ["AWS_KEY", "DB_PASSWORD"])
run = function.run(task, ...)

The with_secrets() function tells MLRun what secrets the executed code needs to access. The MLRun framework
prepares the needed infrastructure to make these secrets available to the runtime, and passes information about them to
the execution framework by specifying those secrets in the spec of the runtime. For example, if running a kubernetes
job, the secret keys are noted in the generated pod’s spec.

The actual details of MLRun’s handling of the secrets differ per the secret provider used. The following sections
provide more details on these providers and how they handle secrets and their values.

Regardless of the type of secret provider used, the executed code uses the get_secret() API to gain access to the
value of the secrets passed to it, as shown in the above example.

12.6 Scheduled jobs

Oftentimes you may want to run a job on a regular schedule. For example, fetching from a datasource every morning,
compiling an analytics report every month, or detecting model drift every hour.

12.6.1 Create a job

MLRun makes it very simple to add a schedule to a given job. To showcase this, the following job runs the code below,
which resides in a file titled schedule.py:

def hello(context):
print("You just ran a scheduled job!")

To create the job, use the code_to_function syntax and specify the kind like below:

import mlrun

job = mlrun.code_to_function(
name="my-scheduled-job", # Name of the job (displayed in console and UI)
filename="schedule.py", # Python file or Jupyter notebook to run
kind="job", # Run as a job
image="mlrun/mlrun", # Use this Docker image

(continues on next page)
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handler="hello" # Execute the function hello() within code.py
)

12.6.2 Add a schedule

To add a schedule, run the job and specify the schedule parameter using Cron syntax like so:

job.run(schedule="0 * * * *")

This runs the job every hour. An excellent resource for generating Cron schedules is Crontab.guru.

12.7 Distributed runtimes

Many of the runtimes support horizontal scaling. You can specify the number of replicas or the min—max value
range (for auto scaling in Dask or Nuclio). When scaling functions MLRun uses a high-speed messaging protocol and
shared storage (volumes, objects, databases, or streams). MLRun runtimes handle the orchestration and monitoring of
the distributed task.

In this section

12.7.1 Dask distributed runtime

Quick Links

• Running Dask Over MLRun

• Pipelines Using Dask, Kubeflow and MLRun
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Dask overview

Source: Dask docs Dask is a flexible library for parallel computing in Python.

Dask is composed of two parts:

1. Dynamic task scheduling optimized for computation. This is similar to Airflow, Luigi, Celery, or Make, but
optimized for interactive computational workloads.

2. “Big Data” collections like parallel arrays, dataframes, and lists that extend common interfaces like NumPy,
Pandas, or Python iterators to larger-than-memory or distributed environments. These parallel collections run
on top of dynamic task schedulers.

Dask emphasizes the following virtues:

• Familiar: Provides parallelized NumPy array and Pandas DataFrame objects

• Flexible: Provides a task scheduling interface for more custom workloads and integration with other projects.

• Native: Enables distributed computing in pure Python with access to the PyData stack.

• Fast: Operates with low overhead, low latency, and minimal serialization necessary for fast numerical algorithms

• Scales up: Runs resiliently on clusters with 1000s of cores

• Scales down: Trivial to set up and run on a laptop in a single process

• Responsive: Designed with interactive computing in mind, it provides rapid feedback and diagnostics to aid
humans Dask collections and schedulers

Dask DataFrame mimics Pandas

import pandas as pd import dask.dataframe as dd
df = pd.read_csv('2015-01-01.csv') df = dd.read_csv('2015-*-*.csv')
df.groupby(df.user_id).value.mean() df.groupby(df.user_id).value.mean().compute()

Dask Array mimics NumPy - documentation

import numpy as np import dask.array as da
f = h5py.File('myfile.hdf5') f = h5py.File('myfile.hdf5')
x = np.array(f['/small-data']) x = da.from_array(f['/big-data'],

chunks=(1000, 1000))
x - x.mean(axis=1) x - x.mean(axis=1).compute()

Dask Bag mimics iterators, Toolz, and PySpark - documentation

import dask.bag as db
b = db.read_text('2015-*-*.json.gz').map(json.loads)
b.pluck('name').frequencies().topk(10, lambda pair: pair[1]).compute()

Dask Delayed mimics for loops and wraps custom code - documentation

from dask import delayed
L = []
for fn in filenames: # Use for loops to build up computation

data = delayed(load)(fn) # Delay execution of function
(continues on next page)
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L.append(delayed(process)(data)) # Build connections between variables

result = delayed(summarize)(L)
result.compute()

The concurrent.futures interface provides general submission of custom tasks: - documentation

from dask.distributed import Client
client = Client('scheduler:port')

futures = []
for fn in filenames:

future = client.submit(load, fn)
futures.append(future)

summary = client.submit(summarize, futures)
summary.result()

Dask.distributed

Dask.distributed is a lightweight library for distributed computing in Python. It extends both the concurrent.futures
and dask APIs to moderate sized clusters.

192 Chapter 12. Jobs



mlrun, Release UNKNOWN

Motivation

Distributed serves to complement the existing PyData analysis stack. In particular it meets the following needs:

• Low latency: Each task suffers about 1ms of overhead. A small computation and network roundtrip can complete
in less than 10ms.

• Peer-to-peer data sharing: Workers communicate with each other to share data. This removes central bottle-
necks for data transfer.

• Complex Scheduling: Supports complex workflows (not just map/filter/reduce) which are necessary for sophis-
ticated algorithms used in nd-arrays, machine learning, image processing, and statistics.

• Pure Python: Built in Python using well-known technologies. This eases installation, improves efficiency (for
Python users), and simplifies debugging.

• Data Locality: Scheduling algorithms cleverly execute computations where data lives. This minimizes network
traffic and improves efficiency.

• Familiar APIs: Compatible with the concurrent.futures API in the Python standard library. Compatible with
dask API for parallel algorithms

• Easy Setup: As a Pure Python package distributed is pip installable and easy to set up on your own cluster.

Architecture

Dask.distributed is a centrally managed, distributed, dynamic task scheduler. The central dask-scheduler pro-
cess coordinates the actions of several dask-worker processes spread across multiple machines and the concurrent
requests of several clients.

The scheduler is asynchronous and event driven, simultaneously responding to requests for computation from multiple
clients and tracking the progress of multiple workers. The event-driven and asynchronous nature makes it flexible to
concurrently handle a variety of workloads coming from multiple users at the same time while also handling a fluid
worker population with failures and additions. Workers communicate amongst each other for bulk data transfer over
TCP.

Internally the scheduler tracks all work as a constantly changing directed acyclic graph of tasks. A task is a Python
function operating on Python objects, which can be the results of other tasks. This graph of tasks grows as users submit
more computations, fills out as workers complete tasks, and shrinks as users leave or become disinterested in previous
results.

Users interact by connecting a local Python session to the scheduler and submitting work, either by individual calls to the
simple interface client.submit(function, *args, **kwargs) or by using the large data collections and parallel
algorithms of the parent dask library. The collections in the dask library like dask.array and dask.dataframe
provide easy access to sophisticated algorithms and familiar APIs like NumPy and Pandas, while the simple client.
submit interface provides users with custom control when they want to break out of canned “big data” abstractions
and submit fully custom workloads.
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~5X Faster with Dask

Short example which demonstrates the power of Dask, in this notebook we will preform the following:

• Generate random text files

• Process the file by sorting and counting it’s content

• Compare run times

Generate random text files

import random
import string
import os

from collections import Counter
from dask.distributed import Client

import warnings
warnings.filterwarnings('ignore')

def generate_big_random_letters(filename, size):
"""
generate big random letters/alphabets to a file
:param filename: the filename
:param size: the size in bytes
:return: void
"""
chars = ''.join([random.choice(string.ascii_letters) for i in range(size)]) #1

with open(filename, 'w') as f:
f.write(chars)

pass

PATH = '/User/howto/dask/random_files'
SIZE = 10000000

for i in range(100):
generate_big_random_letters(filename = PATH + '/file_' + str(i) + '.txt',

size = SIZE)

Setfunction for benchmark

def count_letters(path):
"""
count letters in text file
:param path: path to file
"""
# open file in read mode
file = open(path, "r")

(continues on next page)
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# read the content of file
data = file.read()

# sort file
sorted_file = sorted(data)

# count file
number_of_characters = len(sorted_file)

return number_of_characters

def process_files(path):
"""
list file and count letters
:param path: path to folder with files
"""
num_list = []
files = os.listdir(path)

for file in files:
cnt = count_letters(os.path.join(path, file))
num_list.append(cnt)

l = num_list
return print("done!")

Sort & count number of letters with Python

%%time
PATH = '/User/howto/dask/random_files/'
process_files(PATH)

done!
CPU times: user 2min 19s, sys: 9.31 s, total: 2min 29s
Wall time: 2min 32s

Sort & count number of letters with Dask

# get the dask client address
client = Client()

# list all files in folder
files = [PATH + x for x in os.listdir(PATH)]

%%time
# run the count_letter function on a list of files while using multiple workers
a = client.map(count_letters, files)
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CPU times: user 13.2 ms, sys: 983 µs, total: 14.2 ms
Wall time: 12.2 ms

%%time
# gather results
l = client.gather(a)

CPU times: user 3.39 s, sys: 533 ms, total: 3.92 s
Wall time: 40 s

Additional topics

Running Dask on the cluster with mlrun

The dask frameworks enables users to parallelize their python code and run it as a distributed process on Iguazio cluster
and dramatically accelerate their performance. In this notebook you’ll learn how to create a dask cluster and then an
mlrun function running as a dask client. It also demonstrates how to run parallelize custom algorithm using Dask
Delayed option

For more information on dask over kubernetes: https://kubernetes.dask.org/en/latest/

Set up the environment

# set mlrun api path and artifact path for logging
import mlrun
project_name = "dask-demo"
mlrun.set_environment(project=project_name, artifact_path = './')

('dask-demo', '/User/dask')

Create and Start Dask Cluster

Dask functions can be local (local workers), or remote (use containers in the cluster), in the case of remote users can
specify the number of replica (optional) or leave blank for auto-scale. We use new_function() to define our Dask
cluster and set the desired configuration of that clustered function.

if the dask workers need to access the shared file system we apply a shared volume mount (e.g. via v3io mount).

Dask function spec have several unique attributes (in addition to the standard job attributes):

• .remote - bool, use local or clustered dask

• .replicas - number of desired replicas, keep 0 for auto-scale

• .min_replicas, .max_replicas - set replicas range for auto-scale

• .scheduler_timeout - cluster will be killed after timeout (inactivity), default is ‘60 minutes’

• .nthreads - number of worker threads

If you want to access the dask dashboard or scheduler from remote you need to use NodePort service type (set .
service_type to ‘NodePort’), and the external IP need to be specified in mlrun configuration (mlconf.remote_host),
this will be set automatically if you are running on an Iguazio cluster.
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We specify the kind (dask) and the container image

# create an mlrun function which will init the dask cluster
dask_cluster_name = "dask-cluster"
dask_cluster = mlrun.new_function(dask_cluster_name, kind='dask', image='mlrun/ml-models
→˓')
dask_cluster.apply(mlrun.mount_v3io())

<mlrun.runtimes.daskjob.DaskCluster at 0x7f7dbe4166d0>

# set range for # of replicas with replicas and max_replicas
dask_cluster.spec.min_replicas = 1
dask_cluster.spec.max_replicas = 4

# set the use of dask remote cluster (distributed)
dask_cluster.spec.remote = True
dask_cluster.spec.service_type = "NodePort"

# set dask memory and cpu limits
dask_cluster.with_requests(mem='2G', cpu='2')

Initialize the Dask Cluster

When we request the dask cluster client attribute it will verify the cluster is up and running

# init dask client and use the scheduler address as param in the following cell
dask_cluster.client

> 2021-01-24 23:48:54,057 [info] trying dask client at: tcp://mlrun-dask-cluster-
→˓b3c6e737-3.default-tenant:8786
> 2021-01-24 23:48:54,067 [info] using remote dask scheduler (mlrun-dask-cluster-
→˓b3c6e737-3) at: tcp://mlrun-dask-cluster-b3c6e737-3.default-tenant:8786

/User/.pythonlibs/jupyter/lib/python3.7/site-packages/distributed/client.py:1129:␣
→˓VersionMismatchWarning: Mismatched versions found

+---------+--------+-----------+---------+
| Package | client | scheduler | workers |
+---------+--------+-----------+---------+
| blosc | 1.7.0 | 1.10.2 | 1.10.2 |
| lz4 | 3.1.0 | 3.1.3 | 3.1.3 |
| msgpack | 1.0.0 | 1.0.2 | 1.0.2 |
| numpy | 1.19.2 | 1.18.1 | 1.18.1 |
| toolz | 0.11.1 | 0.10.0 | 0.10.0 |
| tornado | 6.0.4 | 6.0.3 | 6.0.3 |
+---------+--------+-----------+---------+
Notes:
- msgpack: Variation is ok, as long as everything is above 0.6
warnings.warn(version_module.VersionMismatchWarning(msg[0]["warning"]))
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<IPython.core.display.HTML object>

<Client: 'tcp://10.200.0.51:8786' processes=1 threads=1, memory=4.12 GB>

Creating A Function Which Run Over Dask

# mlrun: start-code

Import mlrun and dask. nuclio is used just to convert the code into an mlrun function

import mlrun

%nuclio config kind = "job"
%nuclio config spec.image = "mlrun/ml-models"

%nuclio: setting kind to 'job'
%nuclio: setting spec.image to 'mlrun/ml-models'

from dask.distributed import Client
from dask import delayed
from dask import dataframe as dd

import warnings
import numpy as np
import os
import mlrun

warnings.filterwarnings("ignore")

python function code

This simple function reads a csv file using dask dataframe and run group by and describe function on the dataset and
store the results as a dataset artifact

def test_dask(context,
dataset: mlrun.DataItem,
client=None,
dask_function: str=None) -> None:

# setup dask client from the MLRun dask cluster function
if dask_function:

client = mlrun.import_function(dask_function).client
elif not client:

client = Client()

# load the dataitem as dask dataframe (dd)
df = dataset.as_df(df_module=dd)

# run describe (get statistics for the dataframe) with dask
(continues on next page)
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df_describe = df.describe().compute()

# run groupby and count using dask
df_grpby = df.groupby("VendorID").count().compute()

context.log_dataset("describe",
df=df_grpby,
format='csv', index=True)

return

# mlrun: end-code

Test Our Function Over Dask

Load sample data

DATA_URL="/User/examples/ytrip.csv"

!mkdir -p /User/examples/
!curl -L "https://s3.wasabisys.com/iguazio/data/Taxi/yellow_tripdata_2019-01_subset.csv"␣
→˓> {DATA_URL}

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 84.9M 100 84.9M 0 0 17.3M 0 0:00:04 0:00:04 --:--:-- 19.1M

Convert the code to MLRun function

Use code_to_function to convert the code to MLRun and specify the configuration for the dask process (e.g. replicas,
memory etc.) Note that the resource configurations are per worker

# mlrun will transform the code above (up to nuclio: end-code cell) into serverless␣
→˓function
# which will run in k8s pods
fn = mlrun.code_to_function("test_dask", kind='job', handler="test_dask").apply(mlrun.
→˓mount_v3io())

Run the function

When running the function you would see a link as part of the result. click on this link takes you to the dask monitoring
dashboard

# function URI is db://<project>/<name>
dask_uri = f'db://{project_name}/{dask_cluster_name}'
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r = fn.run(handler = test_dask,
inputs={"dataset": DATA_URL},
params={"dask_function": dask_uri})

> 2021-01-24 23:49:37,858 [info] starting run test-dask-test_dask␣
→˓uid=6410ec27b63e4a12b025696fcabc2dc9 DB=http://mlrun-api:8080
> 2021-01-24 23:49:38,069 [info] Job is running in the background, pod: test-dask-test-
→˓dask-rmgkn
> 2021-01-24 23:49:41,647 [warning] Unable to parse server or client version. Assuming␣
→˓compatible: {'server_version': 'unstable', 'client_version': 'unstable'}
> 2021-01-24 23:49:42,112 [info] using in-cluster config.
> 2021-01-24 23:49:42,113 [info] trying dask client at: tcp://mlrun-dask-cluster-
→˓b3c6e737-3.default-tenant:8786
> 2021-01-24 23:49:42,134 [info] using remote dask scheduler (mlrun-dask-cluster-
→˓b3c6e737-3) at: tcp://mlrun-dask-cluster-b3c6e737-3.default-tenant:8786
remote dashboard: default-tenant.app.yh57.iguazio-cd0.com:30433
> 2021-01-24 23:49:48,334 [info] run executed, status=completed
final state: completed

<IPython.core.display.HTML object>

to track results use .show() or .logs() or in CLI:
!mlrun get run 6410ec27b63e4a12b025696fcabc2dc9 --project dask-demo , !mlrun logs␣
→˓6410ec27b63e4a12b025696fcabc2dc9 --project dask-demo
> 2021-01-24 23:49:50,284 [info] run executed, status=completed

Track the progress in the UI

Users can view the progress and detailed information in the mlrun UI by clicking on the uid above. Also, to track the
dask progress in the dask UI click on the “dashboard link” above the “client” section

Pipelines using Dask, Kubeflow and MLRun

Create a project to host functions, jobs and artifacts

Projects are used to package multiple functions, workflows, and artifacts. Project code and definitions are usually stored
in a Git archive.

The following code creates a new project in a local dir and initializes git tracking on it.

import os
import mlrun
import warnings
warnings.filterwarnings("ignore")

# set project name and dir
project_name = 'sk-project-dask'
project_dir = './'

# specify artifacts target location
(continues on next page)
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_, artifact_path = mlrun.set_environment(project=project_name)

# set project
sk_dask_proj = mlrun.get_or_create_project(project_name, project_dir, init_git=True)

> 2022-09-27 17:26:14,808 [info] loaded project sk-project-dask from MLRun DB
> 2022-09-27 17:26:14,839 [info] loaded project sk-project-dask from MLRun DB

Init Dask cluster

import mlrun
# set up function from local file
dsf = mlrun.new_function(name="mydask", kind="dask", image="mlrun/ml-models")

# set up function specs for dask
dsf.spec.remote = True
dsf.spec.replicas = 5
dsf.spec.service_type = 'NodePort'
dsf.with_limits(mem="6G")
dsf.spec.nthreads = 5

# apply mount_v3io over our function so that our k8s pod which run our function
# will be able to access our data (shared data access)
dsf.apply(mlrun.mount_v3io())

<mlrun.runtimes.daskjob.DaskCluster at 0x7f47fce9c850>

dsf.save()

'db://sk-project-dask/mydask'

# init dask cluster
dsf.client

> 2022-09-27 17:26:25,134 [info] trying dask client at: tcp://mlrun-mydask-d7df9301-d.
→˓default-tenant:8786
> 2022-09-27 17:26:25,162 [info] using remote dask scheduler (mlrun-mydask-d7df9301-d)␣
→˓at: tcp://mlrun-mydask-d7df9301-d.default-tenant:8786

<IPython.core.display.HTML object>

12.7. Distributed runtimes 201



mlrun, Release UNKNOWN

<Client: 'tcp://10.200.152.178:8786' processes=0 threads=0, memory=0 B>

Load and run a functions

Load the function object from .py .yaml file or function hub (marketplace).

# load function from the marketplace
sk_dask_proj.set_function("hub://describe", name="describe")
sk_dask_proj.set_function("hub://sklearn_classifier_dask", name="dask_classifier")

<mlrun.runtimes.kubejob.KubejobRuntime at 0x7f48353d5130>

Create a fully automated ML pipeline

Add more functions to the project to be used in the pipeline (from the functions hub/marketplace)

Describe data, train and eval model with dask.

Define and save a pipeline

The following workflow definition will be written into a file. It describes a Kubeflow execution graph (DAG) and how
functions and data are connected to form an end to end pipeline.

• Describe data.

• Train, test and evaluate with dask.

Check the code below to see how functions objects are initialized and used (by name) inside the workflow. The
workflow.py file has two parts, initialize the function objects and define pipeline dsl (connect the function inputs
and outputs).

Note: The pipeline can include CI steps like building container images and deploying models as illustrated
in the following example.

%%writefile workflow.py
import os
from kfp import dsl
import mlrun

# params
funcs = {}
LABELS = "label"
DROP = "congestion_surcharge"
DATA_URL = mlrun.get_sample_path("data/iris/iris_dataset.csv")
DASK_CLIENT = "db://sk-project-dask/mydask"

# init functions is used to configure function resources and local settings
def init_functions(functions: dict, project=None, secrets=None):

for f in functions.values():
(continues on next page)
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f.apply(mlrun.mount_v3io())
pass

@dsl.pipeline(name="Demo training pipeline", description="Shows how to use mlrun")
def kfpipeline():

# Describe the data
describe = funcs["describe"].as_step(

inputs={"table": DATA_URL},
params={"dask_function": DASK_CLIENT},

)

# Train, test and evaluate:
train = funcs["dask_classifier"].as_step(

name="train",
handler="train_model",
inputs={"dataset": DATA_URL},
params={

"label_column": LABELS,
"dask_function": DASK_CLIENT,
"test_size": 0.10,
"model_pkg_class": "sklearn.ensemble.RandomForestClassifier",
"drop_cols": DROP,

},
outputs=["model", "test_set"],

)
train.after(describe)

Overwriting workflow.py

# register the workflow file as "main", embed the workflow code into the project YAML
sk_dask_proj.set_workflow('main', 'workflow.py', embed=False)

Save the project definitions to a file (project.yaml). It is recommended to commit all changes to a Git repo.

sk_dask_proj.save()

<mlrun.projects.project.MlrunProject at 0x7f48342e4880>

Run a pipeline workflow

Use the run method to execute a workflow. You can provide alternative arguments and specify the default target for
workflow artifacts. The workflow ID is returned and can be used to track the progress or you can use the hyperlinks.

Note: The same command can be issued through CLI commands: mlrun project my-proj/ -r main
-p "v3io:///users/admin/mlrun/kfp/{{workflow.uid}}/"

The dirty flag lets you run a project with uncommitted changes (when the notebook is in the same git dir it is always
dirty) The watch flag waits for the pipeline to complete and print results.
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artifact_path = os.path.abspath('./pipe/{{workflow.uid}}')
run_id = sk_dask_proj.run(

'main',
arguments={},
artifact_path=artifact_path,
dirty=False,
watch=True

)

<IPython.core.display.HTML object>

<graphviz.graphs.Digraph at 0x7f47fce02a90>

<IPython.core.display.HTML object>

back to top

12.7.2 MPIJob and Horovod runtime

Running distributed workloads

Training a Deep Neural Network is a hard task. With growing datasets, wider and deeper networks, training our Neural
Network can require a lot of resources (CPUs / GPUs / Mem and Time).

There are two main reasons why we would like to distribute our Deep Learning workloads:

1. Model Parallelism — The Model is too big to fit a single GPU.
In this case the model contains too many parameters to hold within a single GPU.
To negate this we can use strategies like Parameter Server or slicing the model into slices of consecutive layers
which we can fit in a single GPU.
Both strategies require Synchronization between the layers held on different GPUs / Parameter Server shards.

2. Data Parallelism — The Dataset is too big to fit a single GPU.
Using methods like Stochastic Gradient Descent we can send batches of data to our models for gradient esti-
mation. This comes at the cost of longer time to converge since the estimated gradient may not fully represent
the actual gradient.
To increase the likelihood of estimating the actual gradient we could use bigger batches, by sending small batches
to different GPUs running the same Neural Network, calculating the batch gradient and then running a Synchro-
nization Step to calculate the average gradient over the batches and update the Neural Networks running on the
different GPUs.

It is important to understand that the act of distribution adds extra Synchronization Costs which may
vary according to your cluster’s configuration.

As the gradients and NN needs to be propagated to each GPU in the cluster every epoch (or a number of
steps), Networking can become a bottleneck and sometimes different configurations need to be used for
optimal performance.

Scaling Efficiency is the metric used to show by how much each additional GPU should benefit the training
process with Horovod showing up to 90% (When running with a well written code and good parameters).
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How can we distribute our training?

There are two different cluster configurations (which can be combined) we need to take into account.

• Multi Node — GPUs are distributed over multiple nodes in the cluster.

• Multi GPU — GPUs are within a single Node.

In this demo we show a Multi Node Multi GPU — Data Parallel enabled training using Horovod.
However, you should always try and use the best distribution strategy for your use case (due to the added costs of the
distribution itself, ability to run in an optimized way on specific hardware or other considerations that may arise).

How Horovod works?

Horovod’s primary motivation is to make it easy to take a single-GPU training script and successfully scale it to train
across many GPUs in parallel. This has two aspects:

• How much modification does one have to make to a program to make it distributed, and how easy is it to run it?

• How much faster would it run in distributed mode?

Horovod Supports TensorFlow, Keras, PyTorch, and Apache MXNet.

in MLRun we use Horovod with MPI in order to create cluster resources and allow for optimized networking.
Note: Horovod and MPI may use NCCL when applicable which may require some specific configuration arguments
to run optimally.

Horovod uses this MPI and NCCL concepts for distributed computation and messaging to quickly and easily synchro-
nize between the different nodes or GPUs.
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Horovod will run your code on all the given nodes (Specific node can be addressed via hvd.rank()) while using an
hvd.DistributedOptimizer wrapper to run the synchronization cycles between the copies of your Neural Network
running at each node.

Note: Since all the copies of your Neural Network must be the same, Your workers will adjust themselves to the rate of
the slowest worker (simply by waiting for it to finish the epoch and receive its updates). Thus try not to make a specific
worker do a lot of additional work on each epoch (Like a lot of saving, extra calculations, etc. . . ) since this can affect
the overall training time.

How do we integrate TF2 with Horovod?

As it’s one of the main motivations, integration is fairly easy and requires only a few steps: (You can read the full
instructions for all the different frameworks on Horovod’s documentation website).

1. Run hvd.init().

2. Pin each GPU to a single process. With the typical setup of one GPU per process, set this to local rank. The first
process on the server will be allocated the first GPU, the second process will be allocated the second GPU, and
so forth.

gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:

tf.config.experimental.set_memory_growth(gpu, True)
if gpus:

tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')

3. Scale the learning rate by the number of workers.
Effective batch size in synchronous distributed training is scaled by the number of workers. An increase in
learning rate compensates for the increased batch size.
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4. Wrap the optimizer in hvd.DistributedOptimizer.
The distributed optimizer delegates gradient computation to the original optimizer, averages gradients using
allreduce or allgather, and then applies those averaged gradients.
For TensorFlow v2, when using a tf.GradientTape, wrap the tape in hvd.DistributedGradientTape in-
stead of wrapping the optimizer.

5. Broadcast the initial variable states from rank 0 to all other processes.
This is necessary to ensure consistent initialization of all workers when training is started with random weights
or restored from a checkpoint.
For TensorFlow v2, use hvd.broadcast_variables after models and optimizers have been initialized.

6. Modify your code to save checkpoints only on worker 0 to prevent other workers from corrupting them.
For TensorFlow v2, construct a tf.train.Checkpoint and only call checkpoint.save()when hvd.rank()
== 0.

You can go to Horovod’s Documentation to read more about horovod.

Image classification use case

See the end to end Image Classification with Distributed Training Demo

12.7.3 Spark Operator runtime

Using Spark Operator for running Spark jobs over k8s.

The spark-on-k8s-operator allows Spark applications to be defined in a declarative manner and supports one-time
Spark applications with SparkApplication and cron-scheduled applications with ScheduledSparkApplication.

When sending a request with MLRun to the Spark operator, the request contains your full application configuration
including the code and dependencies to run (packaged as a docker image or specified via URIs), the infrastructure
parameters, (e.g. the memory, CPU, and storage volume specs to allocate to each Spark executor), and the Spark
configuration.

Kubernetes takes this request and starts the Spark driver in a Kubernetes pod (a k8s abstraction, just a docker container
in this case). The Spark driver then communicates directly with the Kubernetes master to request executor pods, scaling
them up and down at runtime according to the load if dynamic allocation is enabled. Kubernetes takes care of the bin-
packing of the pods onto Kubernetes nodes (the physical VMs), and dynamically scales the various node pools to meet
the requirements.

When using Spark operator the resources are allocated per task, meaning that it scales down to zero when the task is
done.

import mlrun
import os

# set up new spark function with spark operator
# command will use our spark code which needs to be located on our file system
# the name param can have only non capital letters (k8s convention)
read_csv_filepath = os.path.join(os.path.abspath('.'), 'spark_read_csv.py')
sj = mlrun.new_function(kind='spark', command=read_csv_filepath, name='sparkreadcsv')

# set spark driver config (gpu_type & gpus=<number_of_gpus> supported too)
sj.with_driver_limits(cpu="1300m")
sj.with_driver_requests(cpu=1, mem="512m")

(continues on next page)
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(continued from previous page)

# set spark executor config (gpu_type & gpus=<number_of_gpus> are supported too)
sj.with_executor_limits(cpu="1400m")
sj.with_executor_requests(cpu=1, mem="512m")

# adds fuse, daemon & iguazio's jars support
sj.with_igz_spark()

# Alternately, move volume_mounts to driver and executor-specific fields and leave
# v3io mounts out of executor mounts if mount_v3io_to_executor=False
# sj.with_igz_spark(mount_v3io_to_executor=False)

# set spark driver volume mount
# sj.function.with_driver_host_path_volume("/host/path", "/mount/path")

# set spark executor volume mount
# sj.function.with_executor_host_path_volume("/host/path", "/mount/path")

# confs are also supported
sj.spec.spark_conf['spark.eventLog.enabled'] = True

# add python module
sj.spec.build.commands = ['pip install matplotlib']

# Number of executors
sj.spec.replicas = 2

# Rebuilds the image with MLRun - needed in order to support artifactlogging etc
sj.deploy()

# Run task while setting the artifact path on which our run artifact (in any) will be␣
→˓saved
sj.run(artifact_path='/User')

Spark Code (spark_read_csv.py)

from pyspark.sql import SparkSession
from mlrun import get_or_create_ctx

context = get_or_create_ctx("spark-function")

# build spark session
spark = SparkSession.builder.appName("Spark job").getOrCreate()

# read csv
df = spark.read.load('iris.csv', format="csv",

sep=",", header="true")

# sample for logging
df_to_log = df.describe().toPandas()

(continues on next page)

208 Chapter 12. Jobs



mlrun, Release UNKNOWN

(continued from previous page)

# log final report
context.log_dataset("df_sample",

df=df_to_log,
format="csv")

spark.stop()

12.8 Node affinity

You can assign a node or a node group for services or for jobs executed by a service. When specified, the service or the
pods of a function can only run on nodes whose labels match the node selector entries configured for the specific service.
If node selection for the service is not specified, the selection criteria defaults to the Kubernetes default behavior, and
jobs run on a random node.

For MLRun and Nuclio, you can also specify node selectors on a per-job basis. The default node selectors (defined at
the service level) are applied to all jobs unless you specifically override them for an individual job.

You can configure node affinity for:

• Jupyter

• Presto (The node selection also affects any additional services that are directly affected by Presto, for example
hive and mariadb, which are created if Enable hive is checked in the Presto service.)

• Grafana

• Shell

• MLRun (default value applied to all jobs that can be overwritten for individual jobs)

• Nuclio (default value applied to all jobs that can be overwritten for individual jobs)

See more about Kubernetes nodeSelector.

12.8.1 UI configuration

Configure node selection on the service level in the service’s Custom Parameters tab, under Resources, by adding or
removing Key:Value pairs. For MLRun and Nuclio, this is the default node selection for all MLRun jobs and Nuclio
functions.

You can also configure the node selection for individual MLRun jobs by going to Platform dashboard | Projects | New
Job | Resources | Node selector, and adding or removing Key:Value pairs. Configure the node selection for individual
Nuclio functions when creating a function in the Confguration tab, under Resources, by adding Key:Value pairs.

12.8.2 SDK configuration

Configure node selection by adding the key:value pairs in your Jupyter notebook formatted as a Python dictionary. For
example:

import mlrun
import os
train_fn = mlrun.code_to_function('training',

kind='job',
handler='my_training_function')

(continues on next page)
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train_fn.with_preemption_mode(mode="prevent")
train_fn.run(inputs={"dataset" :my_data})

# Add node selection
func.with_node_selection(node_selector={name})

See with_node_selection.

12.9 Managing job resources

MLRun orchestrates serverless functions over Kubernetes. You can specify the resource requirements (CPU, memory,
GPUs), preferences, and priorities in the logical function object. These are used during the function deployment.

Configuration of job resources is relevant for all supported cloud platforms.

In this section

• Replicas

• CPU, GPU, and memory limits for user jobs

• Volumes

• Preemption mode: Spot vs. On-demand nodes

• Pod priority for user jobs

12.9.1 Replicas

Some runtimes can scale horizontally, configured either as a number of replicas: spec.replicas or a range (for auto
scaling in Dask or Nuclio:

spec.min_replicas = 1
spec.max_replicas = 4

See more details in Dask, MPIJob and Horovod, Spark, Nuclio.

12.9.2 CPU, GPU, and memory limits for user jobs

When you create a pod in an MLRun job or Nuclio function, the pod has default CPU and memory limits. When the
job runs, it can consume resources up to the limits defined. The default limits are set at the service level. You can
change the default limit for the service, and also overwrite the default when creating a job, or a function.

See more about Kubernetes Resource Management for Pods and Containers.
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UI configuration

When creating a service, set the Memory and CPU in the Common Parameters tab, under User jobs defaults. When
creating a job or a function, overwrite the default Memory, CPU, or GPU in the Configuration tab, under Resources.

SDK configuration

Configure the limits assigned to a function by using with_limits. For example:

training_function = mlrun.code_to_function("training.py", name="training", handler="train
→˓",

kind="mpijob",␣
→˓image="mlrun/ml-models-gpu")
training_function.spec.replicas = 2
training_function.with_requests(cpu=2)
training_function.gpus(1)

Note

When specifying GPUs, MLRun uses nvidia.com/gpu as default GPU type. To use a different type of GPU, specify
it using the optional gpu_type parameter.

12.9.3 Volumes

When you create a pod in an MLRun job or Nuclio function, the pod by default has access to a file-system which
is ephemeral, and gets deleted when the pod completes its execution. In many cases, a job requires access to files
residing on external storage, or to files containing configurations and secrets exposed through Kubernetes config-maps
or secrets. Pods can be configured to consume the following types of volumes, and to mount them as local files in the
local pod file-system:

• V3IO containers: when running on the Iguazio system, pods have access to the underlying V3IO shared storage.
This option mounts a V3IO container or a subpath within it to the pod through the V3IO FUSE driver.

• PVC: Mount a Kubernetes persistent volume claim (PVC) to the pod. The persistent volume and the claim need
to be configured beforehand.

• Config Map: Mount a Kubernetes Config Map as local files to the pod.

• Secret: Mount a Kubernetes secret as local files to the pod.

For each of the options, a name needs to be assigned to the volume, as well as a local path to mount the volume at (using
a Kubernetes Volume Mount). Depending on the type of the volume, other configuration options may be needed, such
as an access-key needed for V3IO volume.

See more about Kubernetes Volumes.

MLRun supports the concept of volume auto-mount which automatically mounts the most commonly used type of
volume to all pods, unless disabled. See more about MLRun auto mount.
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UI configuration

You can configure Volumes when creating a job, rerunning an existing job, and creating an ML function. Modify

the Volumes for an ML function by pressing ML functions, then of the function, Edit | Resources | Volumes
drop-down list.

Select the volume mount type: either Auto (using auto-mount), Manual or None. If selecting Manual, fill in the details
in the volumes list for each volume to mount to the pod. Multiple volumes can be configured for a single pod.

SDK configuration

Configure volumes attached to a function by using the apply function modifier on the function.

For example, using v3io storage:

# import the training function from the marketplace (hub://)
train = mlrun.import_function('hub://sklearn_classifier')# Import the function:
open_archive_function = mlrun.import_function("hub://open_archive")

# use mount_v3io() for iguazio volumes
open_archive_function.apply(mount_v3io())

You can specify a list of the v3io path to use and how they map inside the container (using volume_mounts). For
example:

mlrun.mount_v3io(name='data',access_key='XYZ123..',volume_mounts=[mlrun.VolumeMount("/
→˓data", "projects/proj1/data")])

See full details in mount_v3io.

Alternatively, using a PVC volume:

mount_pvc(pvc_name="data-claim", volume_name="data", volume_mount_path="/data")

See full details in mount_pvc.

12.9.4 Preemption mode: Spot vs. On-demand nodes

Node selector is supported for all cloud platforms. It is relevant for MLRun and Nuclio only.

When running ML functions you might want to control whether to run on spot nodes or on-demand nodes. Preemption
mode controls whether pods can be scheduled on preemptible (spot) nodes. Preemption mode is supported for all
functions.

Preemption mode uses Kubernets Taints and Toleration to enforce the mode selected. Read more in Kubernetes Taints
and Tolerations.
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Why preemption mode

On-demand instances provide full control over the instance lifecycle. You decide when to launch, stop, hibernate, start,
reboot, or terminate it. With Spot instances you request capacity from specific available zones, though it is
susceptible to spot capacity availability. This is a good choice if you can be flexible about when your applications run
and if your applications can be interrupted.

Here are some questions to consider when choosing the type of node:

• Is the function mission critical and must be operational at all times?

• Is the function a stateful function or stateless function?

• Can the function recover from unexpected failure?

• Is this a job that should run only when there are available inexpensive resources?

Important

When an MLRun job is running on a spot node and it fails, it won’t get back up again. However, if Nuclio goes down
due to a spot issue, it is brought up by Kubernetes.

Kuberenetes has a few methods for configuring which nodes to run on. To get a deeper understanding, see Pod Priority
and Preemption. Also, you must understand the configuration of the spot nodes as specified by the cloud provider.

Stateless and Stateful Applications

When deploying your MLRun jobs to specific nodes, take into consideration that on-demand nodes are designed to run
stateful applications while spot nodes are designed for stateless applications. MLRun jobs are more stateful by nature.
An MLRun job that is assigned to run on a spot node might be subject to interruption; it would have to be designed so
that the job/function state will be saved when scaling to zero.

Supported preemption modes

Preemption mode has three values:

• Allow: The function pod can run on a spot node if one is available.

• Constrain: The function pod only runs on spot nodes, and does not run if none is available.

• Prevent: Default. The function pod cannot run on a spot node.

UI configuration

Note

Relevant when MLRun is executed in the Iguazio platform.

You can configure Spot node support when creating a job, rerunning an existing job, and creating an ML function. The
Run on Spot nodes drop-down list is in the Resources section of jobs. Configure the Spot node support for individual
Nuclio functions when creating a function in the Configuration tab, under Resources.
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SDK configuration

Configure preemption mode by adding the with_preemption_mode parameter in your Jupyter notebook, and speci-
fying a mode from the list of values above. This example illustrates a function that cannot be scheduled on preemptible
nodes:

import mlrun
import os

train_fn = mlrun.code_to_function('training',
kind='job',
handler='my_training_function')

train_fn.with_preemption_mode(mode="prevent")
train_fn.run(inputs={"dataset" :my_data})

See with_preemption_mode.

Alternatively, you can specify the preemption using with_priority_class and fn.
with_priority_class(name="default-priority")node_selector. This example specifies that the
pod/function runs only on non-preemptible nodes:

import mlrun
import os
train_fn = mlrun.code_to_function('training',

kind='job',
handler='my_training_function')

train_fn.with_preemption_mode(mode="prevent")
train_fn.run(inputs={"dataset" :my_data})

fn.with_priority_class(name="default-priority")
fn.with_node_selection(node_selector={"app.iguazio.com/lifecycle":"non-preemptible"})

See with_node_selection.

12.9.5 Pod priority for user jobs

Pods (services, or jobs created by those services) can have priorities, which indicate the relative importance of one
pod to the other pods on the node. The priority is used for scheduling: a lower priority pod can be evicted to allow
scheduling of a higher priority pod. Pod priority is relevant for all pods created by the service. For MLRun, it applies
to the jobs created by MLRun. For Nuclio it applies to the pods of the Nuclio-created functions.

Eviction uses these values to determine what to evict with conjunction to the pods priority Pod Priority and Preemption.

Pod priority is specified through Priority classes, which map to a priority value. The priority values are: High, Medium,
Low. The default is Medium. Pod priority is supported for:

• MLRun jobs: the default priority class for the jobs that MLRun creates.

• Nuclio functions: the default priority class for the user-created functions.

• Jupyter

• Presto (The pods priority also affects any additional services that are directly affected by Presto, for example like
hive and mariadb, which are created if Enable hive is checked in the Presto service.)
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• Grafana

• Shell

UI configuration

Note

Relevant when MLRun is executed in the Iguazio platform.

Configure the default priority for a service, which is applied to the service itself or to all subsequently created user-jobs
in the service’s Common Parameters tab, User jobs defaults section, Priority class drop-down list.

Modify the priority for an ML function by pressing ML functions, then of the function, Edit | Resources | Pods
Priority drop-down list.

SDK configuration

Configure pod priority by adding the priority class parameter in your Jupyter notebook. For example:

import mlrun
import os
train_fn = mlrun.code_to_function('training',

kind='job',
handler='my_training_function')

train_fn.with_priority_class(name={value})
train_fn.run(inputs={"dataset" :my_data})

See with_priority_class.
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THIRTEEN

FEATURE STORE

The feature store is a centralized and versioned catalog where everyone can engineer and store features along with their
metadata and statistics, share them and reuse them, and analyze their impact on existing models. The feature store
plugs seamlessly into the data ingestion, model training, model serving, and model monitoring components, elimi-
nating significant development and operations overhead, and delivering exceptional performance. Users can simply
group together independent features into vectors, and use those from their jobs or real-time services. Iguazio’s high
performance engines take care of automatically joining and accurately computing the features. You can use the feature
store throughout the MLOps flow:

1. Ingesting data

2. Training

3. Model serving

See also the feature store tutorial Feature store example (stocks).

In this section

• Overview

• How the feature store works

• Training and serving using the feature store

• Further reading

13.1 Overview

In machine-learning scenarios, generating a new feature, called feature engineering, takes a tremendous amount of
work. The same features must be used both for training, based on historical data, and for the model prediction based
on the online or real-time data. This creates a significant additional engineering effort, and leads to model inaccuracy
when the online and offline features do not match. Furthermore, monitoring solutions must be built to track features
and results and send alerts of data or model drift.

Consider a scenario in which you train a model and one of its features is a comparison of the current amount to the
average amount spent during the last 3 months by the same person. Creating such a feature is easy when you have the
full dataset in training, but in serving, this feature must be calculated in an online manner. The “brute-force” way to
address this is to have an ML engineer create an online pipeline that reimplements all the feature calculations done in
the offline process. This is not just time-consuming and error-prone, but very difficult to maintain over time, and results
in a lengthy deployment time. This is exacerbated when having to deal with thousands of features with an increasing
number of data engineers and data scientists that are creating and using the features.
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With MLRun’s feature store you can easily define features during the training, that are deployable to serving, without
having to define all the “glue” code. You simply create the necessary building blocks to define features and integration,
with offline and online storage systems to access the features.

The feature store is comprised of the following:

• Feature — In machine-learning, a feature is an individual measurable property or characteristic of a phenomenon
being observed. This can be raw data (e.g., transaction amount, image pixel, etc.) or a calculation derived from
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one or more other features (e.g., deviation from average, pattern on image, etc.).

• Feature sets — A grouping of features that are ingested together and stored in a logical group. Feature sets take
data from offline or online sources, build a list of features through a set of transformations, and store the resulting
features, along with the associated metadata and statistics. For example, a transaction may be grouped by the
ID of a person performing the transfer or by the device identifier used to perform the transaction. You can also
define in the timestamp source in the feature set, and ingest data into a feature set.

• Execution — A set of operations performed on the data while it is ingested. The graph contains steps that
represent data sources and targets, and can also contain steps that transform and enrich the data that is passed
through the feature set. For a deeper dive, see Feature set transformations.

• Feature vectors — A set of features, taken from one or more feature sets. The feature vector is defined prior to
model training and serves as the input to the model training process. During model serving, the feature values
in the vector are obtained from an online service.

13.2 How the feature store works

The common flow when working with the feature store is to first define the feature set with its source, transformation
graph, and targets. MLRun’s robust transformation engine performs complex operations with just a few lines of Python
code. To test the execution process, call the infer method with a sample DataFrame. This runs all operations in
memory without storing the results. Once the graph is defined, it’s time to ingest the data.

You can ingest data directly from a DataFrame, by calling the feature set ingest method. You can also define an
ingestion process that runs as a Kubernetes job. This is useful if there is a large ingestion process, or if there is a
recurrent ingestion and you want to schedule the job.

MLRun can also leverage Nuclio to perform real-time ingestion by calling the deploy_ingestion_service function.
This means that during serving you can update feature values, and not just read them. For example, you can update a
sliding window aggregation as part of a model serving process.

The next step is to define the feature vector. Call the get_offline_features function to join together features across
different feature sets.
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13.3 Training and serving using the feature store

Next, extract a versioned offline static dataset for training, based on the parquet target defined in the feature sets. You
can train a model with the feature vector data by providing the input in the form of 'store://feature-vectors/
{project}/{feature_vector_name}'.

Training functions generate models and various model statistics. Use MLRun’s auto logging capabilities to store the
models along with all the relevant data, metadata and measurements.

MLRun can apply all the MLOps functionality by using the framework specific apply_mlrun() method, which man-
ages the training process and automatically logs all the framework specific model details, data, metadata and metrics.

The training job automatically generates a set of results and versioned artifacts (run train_run.outputs to view the
job outputs).

For serving, once you validate the feature vector, use the online feature service, based on the nosql target defined
in the feature set for real-time serving. For serving, you define a serving class derived from mlrun.serving.
V2ModelServer. In the class load method call the get_online_feature_service function with the vector name,
which returns a feature service object. In the class preprocess method, call the feature service get method to get the
values of those features.

Using this feature store centric process, using one computation graph definition for a feature set, you receive an auto-
matic online and offline implementation for the feature vectors, with data versioning both in terms of the actual graph
that was used to calculate each data point, and the offline datasets that were created to train each model.

13.4 Further reading

For more information, see:

• Creating and using feature vectors

• Feature store: data ingestion

• Training with the Feature Store

• Serving with the feature store

• Feature store example (stocks)
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MODEL TRAINING

There are many methods and techniques for training a machine learning model. However, there is much more to model
training than the training code itself.

MLRun provides MLOps functionality for model training including job orchestration, experiment tracking, creating
reusable components, and distributed training out of the box. Continue reading for information on each of these capa-
bilies:

14.1 Jobs

Training a model is an example of a Job — something that is run once to completion. MLRun provides you with a
convenient syntax to take a Python training script and automatically package and deploy it on top of a production-ready
Kubernetes cluster. You can also configure many aspects of this deployment including Managing job resources, Python
dependencies, Distributed runtimes, and more.

See the Create a basic training job page for an example of a simple training job. Additionally, see Managing job
resources for ways to configure your jobs.

14.2 Logging artifacts

While training your model, there may be things you want to log including the model itself, datasets, plots/charts,
metrics, etc. All of this and more can be tracked using MLRun experiment tracking.

MLRun supports automatic logging for major ML frameworks such as sklearn, PyTorch, TensorFlow, LightGBM, etc.
MLRun also supports manually logging models, datasets, metrics, and more.

See Working with data and model artifacts for an example.

14.3 Function Marketplace

In addition to running your own Python code, you can also utilize work that others have done by importing from the
MLRun Function Marketplace. There are many reusable functions for data preparation, data analysis, model training,
model deployment, and more.

For example, you can leverage the power of AutoML by using the built-in training function or perform automated
Exploratory Data Analysis (EDA) by using the Describe function.
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14.4 Distributed Training

MLRun also allows you to utilize distributed training and computation frameworks out of the box such as Spark, Dask,
and Horovod. These are useful when your data does not fit into memory, you want to do computations in parallel, or
you want to leverage multiple physical machines to train your model.

See the Spark, Dask, and Horovod pages respectively for examples.
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FIFTEEN

REAL-TIME SERVING PIPELINES (GRAPHS)

MLRun graphs enable building and running DAGs (directed acyclic graph).

MLRun graph capabilities include:

• Easy to build and deploy distributed real-time computation graphs

• Use the real-time serverless engine (Nuclio) for auto-scaling and optimized resource utilization

• Built-in operators to handle data manipulation, IO, machine learning, deep-learning, NLP, etc.

• Built-in monitoring for performance, resources, errors, data, model behaviour, and custom metrics

• Debug in the IDE/Notebook

Graphs are composed of individual steps. The first graph element accepts an Event object, transforms/processes the
event and passes the result to the next steps in the graph. The final result can be written out to some destination (file,
DB, stream, etc.) or returned back to the caller (one of the graph steps can be marked with .respond()).

The serving graphs can be composed of pre-defined graph steps, block-type elements (model servers, routers, en-
sembles, data readers and writers, data engineering tasks, validators, etc.), custom steps, or from native python
classes/functions. A graph can have data processing steps, model ensembles, model servers, post-processing, etc. (see
the Advanced Model Serving Graph Notebook Example). Graphs can auto-scale and span multiple function containers
(connected through streaming protocols).

Different steps can run on the same local function, or run on a remote function. You can call existing functions from
the graph and reuse them from other graphs, as well as scale up and down the different components individually.

Graphs can run inside your IDE or Notebook for test and simulation. Serving graphs are built on top of Nuclio (real-
time serverless engine), MLRun jobs, MLRun Storey (native Python async and stream processing engine), and other
MLRun facilities.

The serving graphs are used by MLRun’s Feature Store to build real-time feature engineering pipelines.

In this section
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15.1 Getting started

This example uses a custom class and custom function. See custom steps for more details.

In this section

• Steps

• Create a function

• Build the graph

• Visualize the graph

• Test the function

• Deploy the function

• Test the deployed function

15.1.1 Steps

The following code defines basic steps that illustrate building a graph. These steps are:

• inc: increments the value by 1.

• mul: multiplies the value by 2.

• WithState: class that increments an internal counter, prints an output, and adds the input value to the current
counter.

# mlrun: start-code

def inc(x):
return x + 1

def mul(x):
return x * 2

class WithState:
def __init__(self, name, context, init_val=0):

self.name = name
self.context = context
self.counter = init_val

def do(self, x):
self.counter += 1
print(f"Echo: {self.name}, x: {x}, counter: {self.counter}")
return x + self.counter

# mlrun: end-code
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15.1.2 Create a function

Now take the code above and create an MLRun function called serving-graph.

import mlrun
fn = mlrun.code_to_function("simple-graph", kind="serving", image="mlrun/mlrun")
graph = fn.set_topology("flow")

15.1.3 Build the graph

Use graph.to() to chain steps. Use .respond() to mark that the output of that step is returned to the caller (as an
http response). By default the graph is async with no response.

graph.to(name="+1", handler='inc')\
.to(name="*2", handler='mul')\
.to(name="(X+counter)", class_name='WithState').respond()

<mlrun.serving.states.TaskStep at 0x7f821e504450>

15.1.4 Visualize the graph

Using the plot method, you can visualize the graph.

graph.plot(rankdir='LR')

<graphviz.dot.Digraph at 0x7f82294f2f90>

15.1.5 Test the function

Create a mock server and test the graph locally. Since this graph accepts a numeric value as the input, that value is
provided in the body parameter.

server = fn.to_mock_server()
server.test(body=5)

Echo: (X+counter), x: 12, counter: 1

13

Run the function again. This time, the counter should be 2 and the output should be 14.

server.test(body=5)

Echo: (X+counter), x: 12, counter: 2

14
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15.1.6 Deploy the function

Use the deploy method to deploy the function.

fn.deploy(project='basic-graph-demo')

> 2021-11-08 07:30:21,571 [info] Starting remote function deploy
2021-11-08 07:30:21 (info) Deploying function
2021-11-08 07:30:21 (info) Building
2021-11-08 07:30:21 (info) Staging files and preparing base images
2021-11-08 07:30:21 (info) Building processor image
2021-11-08 07:30:26 (info) Build complete
2021-11-08 07:30:31 (info) Function deploy complete
> 2021-11-08 07:30:31,785 [info] successfully deployed function: {'internal_invocation_
→˓urls': ['nuclio-basic-graph-demo-simple-graph.default-tenant.svc.cluster.local:8080'],
→˓'external_invocation_urls': ['basic-graph-demo-simple-graph-basic-graph-demo.default-
→˓tenant.app.aganefaibuzg.iguazio-cd2.com/']}

'http://basic-graph-demo-simple-graph-basic-graph-demo.default-tenant.app.aganefaibuzg.
→˓iguazio-cd2.com/'

15.1.7 Test the deployed function

Use the invoke method to call the function.

fn.invoke('', body=5)

> 2021-11-08 07:30:43,241 [info] invoking function: {'method': 'POST', 'path': 'http://
→˓nuclio-basic-graph-demo-simple-graph.default-tenant.svc.cluster.local:8080/'}

13

fn.invoke('', body=5)

> 2021-11-08 07:30:48,359 [info] invoking function: {'method': 'POST', 'path': 'http://
→˓nuclio-basic-graph-demo-simple-graph.default-tenant.svc.cluster.local:8080/'}

14

15.2 Use cases

In this section

• Data and feature engineering

• Example of Simple model serving router

• Example of Advanced data processing and serving ensemble

• Example of NLP processing pipeline with real-time streaming
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In addition to the examples in this section, see the:

• Distributed (multi-function) pipeline example that details how to run a pipeline that consists of multiple serverless
functions (connected using streams).

• Advanced Model Serving Graph Notebook Example that illustrates the flow, task, model, and ensemble router
states; building tasks from custom handlers; classes and storey components; using custom error handlers; testing
graphs locally; deploying a graph as a real-time serverless function.

• MLRun demos repository for additional use cases and full end-to-end examples, including fraud prevention using
the Iguazio feature store, a mask detection demo, and converting existing ML code to an MLRun project.

15.2.1 Data and feature engineering (using the feature store)

You can build a feature set transformation using serving graphs.

High-level transformation logic is automatically converted to real-time serverless processing engines that can read
from any online or offline source, handle any type of structures or unstructured data, run complex computation graphs
and native user code. Iguazio’s solution uses a unique multi-model database, serving the computed features consis-
tently through many different APIs and formats (like files, SQL queries, pandas, real-time REST APIs, time-series,
streaming), resulting in better accuracy and simpler integration.

Read more in Feature store, and Feature set transformations.

15.2.2 Example of a simple model serving router

Graphs are used for serving models with different transformations.

To deploy a serving function, you need to import or create the serving function, add models to it, and then deploy it.

import mlrun
# load the sklearn model serving function and add models to it
fn = mlrun.import_function('hub://v2_model_server')
fn.add_model("model1", model_path={model1-url})
fn.add_model("model2", model_path={model2-url})

# deploy the function to the cluster
fn.deploy()

# test the live model endpoint
fn.invoke('/v2/models/model1/infer', body={"inputs": [5]})

The Serving function supports the same protocol used in KFServing V2 and Triton Serving framework. To invoke the
model, to use following url: <function-host>/v2/models/model1/infer.

See the serving protocol specification for details.

Note: Model url is either an MLRun model store object (starts with store://) or URL of a model directory (in
NFS, s3, v3io, azure, for example s3://{bucket}/{model-dir}). Note that credentials might need to be added to
the serving function via environment variables or MLRun secrets.

See the scikit-learn classifier example, which explains how to create/log MLRun models.
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Writing your own serving class

You can implement your own model serving or data processing classes. All you need to do is:

1. Inherit the base model serving class.

2. Add your implementation for model load() (download the model file(s) and load the model into memory).

3. predict() (accept the request payload and return the prediction/inference results).

You can override additional methods: preprocess, validate, postprocess, explain. You can add custom API
endpoints by adding the method op_xx(event) (which can be invoked by calling the <model-url>/xx, where oper-
ation = xx). See model class API.

For an example of writing the minimal serving functions, see Minimal sklearn serving function example.

See the full V2 Model Server (SKLearn) example that tests one or more classifier models against a held-out dataset.

15.2.3 Example of advanced data processing and serving ensemble

MLRun Serving graphs can host advanced pipelines that handle event/data processing, ML functionality, or any custom
task. The following example demonstrates an asynchronous pipeline that pre-processes data, passes the data into a
model ensemble, and finishes off with post processing.

For a complete example, see the Advanced graph example notebook.

Create a new function of type serving from code and set the graph topology to async flow.

import mlrun
function = mlrun.code_to_function("advanced", filename="demo.py",

kind="serving", image="mlrun/mlrun",
requirements=['storey'])

graph = function.set_topology("flow", engine="async")

Build and connect the graph (DAG) using the custom function and classes and plot the result. Add steps using the
step.to() method (adds a new step after the current one), or using the graph.add_step() method.

If you want the error from the graph or the step to be fed into a specific step (catcher), use the graph.error_handler()
(apply to all steps) or step.error_handler() (apply to a specific step).

Specify which step is the responder (returns the HTTP response) using the step.respond() method. If the responder
is not specified, the graph is non-blocking.

# use built-in storey class or our custom Echo class to create and link Task steps
graph.to("storey.Extend", name="enrich", _fn='({"tag": "something"})') \

.to(class_name="Echo", name="pre-process", some_arg='abc').error_handler("catcher")

# add an Ensemble router with two child models (routes), the "*" prefix mark it is a␣
→˓router class
router = graph.add_step("*mlrun.serving.VotingEnsemble", name="ensemble", after="pre-
→˓process")
router.add_route("m1", class_name="ClassifierModel", model_path=path1)
router.add_route("m2", class_name="ClassifierModel", model_path=path2)

# add the final step (after the router) which handles post processing and respond to the␣
→˓client
graph.add_step(class_name="Echo", name="final", after="ensemble").respond()

(continues on next page)
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(continued from previous page)

# add error handling step, run only when/if the "pre-process" step fail (keep after="")
graph.add_step(handler="error_catcher", name="catcher", full_event=True, after="")

# plot the graph (using Graphviz) and run a test
graph.plot(rankdir='LR')

Create a mock (test) server, and run a test. Use wait_for_completion() to wait for the async event loop to complete.

server = function.to_mock_server()
resp = server.test("/v2/models/m2/infer", body={"inputs": data})
server.wait_for_completion()

And deploy the graph as a real-time Nuclio serverless function with one command:

function.deploy()

Note: If you test a Nuclio function that has a serving graph with the async engine via the Nuclio UI, the UI might not
display the logs in the output.

15.2.4 Example of an NLP processing pipeline with real-time streaming

In some cases it’s useful to split your processing to multiple functions and use streaming protocols to connect those
functions. In this example the data processing is in the first function/container and the NLP processing is in the second
function. In this example the GPU contained in the second function.

See the full notebook example.

# define a new real-time serving function (from code) with an async graph
fn = mlrun.code_to_function("multi-func", filename="./data_prep.py", kind="serving",␣
→˓image='mlrun/mlrun')
graph = fn.set_topology("flow", engine="async")

# define the graph steps (DAG)
graph.to(name="load_url", handler="load_url")\

.to(name="to_paragraphs", handler="to_paragraphs")\

.to("storey.FlatMap", "flatten_paragraphs", _fn="(event)")\

.to(">>", "q1", path=internal_stream)\

.to(name="nlp", class_name="ApplyNLP", function="enrich")\

.to(name="extract_entities", handler="extract_entities", function="enrich")\

.to(name="enrich_entities", handler="enrich_entities", function="enrich")\

.to("storey.FlatMap", "flatten_entities", _fn="(event)", function="enrich")\

.to(name="printer", handler="myprint", function="enrich")\

.to(">>", "output_stream", path=out_stream)

# specify the "enrich" child function, add extra package requirements
child = fn.add_child_function('enrich', './nlp.py', 'mlrun/mlrun')
child.spec.build.commands = ["python -m pip install spacy",

"python -m spacy download en_core_web_sm"]
graph.plot()
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Currently queues support iguazio v3io and Kafka streams.

15.3 Graph concepts and state machine

A graph is composed of the following:

• Step: A Step runs a function or class handler or a REST API call. MLRun comes with a list of pre-built steps that
include data manipulation, readers, writers and model serving. You can also write your own steps using standard
Python functions or custom functions/classes, or can be a external REST API (the special $remote class).

• Router: A special type of step is a router with routing logic and multiple child routes/models. The basic routing
logic is to route to the child routes based on the event.path. More advanced or custom routing can be used, for
example, the ensemble router sends the event to all child routes in parallel, aggregates the result and responds.

• Queue: A queue or stream that accepts data from one or more source steps and publishes to one or more output
steps. Queues are best used to connect independent functions/containers. Queues can run in-memory or be
implemented using a stream, which allows it to span processes/containers.

The Graph server has two modes of operation (topologies):

• Router topology (default): A minimal configuration with a single router and child tasks/routes. This can be used
for simple model serving or single hop configurations.

• Flow topology: A full graph/DAG. The flow topology is implemented using two engines: async (the default) is
based on Storey and asynchronous event loop; and sync, which supports a simple sequence of steps.

This section presents:

• The Event object

• The Context object

• Topology

• Building distributed graphs

• Error handling

15.3.1 The Event object

The Graph state machine accepts an Event object (similar to a Nuclio Event) and passes it along the pipeline. An Event
object hosts the event body along with other attributes such as path (http request path), method (GET, POST, . . . ),
andid (unique event ID).

In some cases the events represent a record with a unique key, which can be read/set through the event.key. Records
have associated event.time that, by default, is the arrival time, but can also be set by a step.

The Task steps are called with the event.body by default. If a task step needs to read or set other event elements (key,
path, time, . . . ) you should set the task full_event argument to True.

Task steps support optional input_path and result_path attributes that allow controlling which portion of the event
is sent as input to the step, and where to update the returned result.

For example, for an event body {"req": {"body": "x"}}, input_path="req.body" and
result_path="resp" the step gets "x" as the input. The output after the step is {"req": {"body":
"x"}: "resp": <step output>}. Note that input_path and result_path do not work together with
full_event=True.

230 Chapter 15. Real-time serving pipelines (graphs)

./available-steps.html
https://github.com/mlrun/storey


mlrun, Release UNKNOWN

15.3.2 The Context object

The step classes are initialized with a context object (when they have context in their __init__ args). The context is
used to pass data and for interfacing with system services. The context object has the following attributes and methods.

Attributes:

• logger: Central logger (Nuclio logger when running in Nuclio).

• verbose: True if in verbose/debug mode.

• root: The graph object.

• current_function: When running in a distributed graph, the current child function name.

Methods:

• get_param(key, default=None): Get the graph parameter by key. Parameters are set at the serving function (e.g.
function.spec.parameters = {"param1": "x"}).

• get_secret(key): Get the value of a project/user secret.

• get_store_resource(uri, use_cache=True): Get the mlrun store object (data item, artifact, model, feature set,
feature vector).

• get_remote_endpoint(name, external=False): Return the remote nuclio/serving function http(s) endpoint
given its [project/]function-name[:tag].

• Response(headers=None, body=None, content_type=None, status_code=200): Create a nuclio response ob-
ject, for returning detailed http responses.

Example, using the context:

if self.context.verbose:
self.context.logger.info('my message', some_arg='text')

x = self.context.get_param('x', 0)

15.3.3 Topology

Router

Once you have a serving function, you need to choose the graph topology. The default is router topology. With the
router topology you can specify different machine learning models. Each model has a logical name. This name is
used to route to the correct model when calling the serving function.

from sklearn.datasets import load_iris

# set the topology/router
graph = fn.set_topology("router")

# Add the model
fn.add_model("model1", class_name="ClassifierModel", model_path="https://s3.wasabisys.
→˓com/iguazio/models/iris/model.pkl")

# Add additional models
#fn.add_model("model2", class_name="ClassifierModel", model_path="<path2>")

# create and use the graph simulator
(continues on next page)
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server = fn.to_mock_server()
x = load_iris()['data'].tolist()
result = server.test("/v2/models/model1/infer", {"inputs": x})

print(result)

> 2021-11-02 04:18:36,925 [info] model model1 was loaded
> 2021-11-02 04:18:36,926 [info] Initializing endpoint records
> 2021-11-02 04:18:36,965 [info] Loaded ['model1']
{'id': '6bd11e864805484ea888f58e478d1f91', 'model_name': 'model1', 'outputs': [0, 0, 0,␣
→˓0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,␣
→˓0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,␣
→˓1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,␣
→˓1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,␣
→˓2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2,␣
→˓2, 2]}

Flow

Using the flow topology, you can specify tasks, which typically manipulate the data. The most common scenario is
pre-processing of data prior to the model execution.

Note: Once the topology is set, you cannot change an existing function topology.

In this topology, you build and connect the graph (DAG) by adding steps using the step.to() method, or by using the
graph.add_step() method.

The step.to() is typically used to chain steps together. graph.add_step can add steps anywhere on
the graph and has before and after parameters to specify the location of the step.

fn2 = mlrun.code_to_function("serving_example_flow",
kind="serving",
image="mlrun/mlrun")

graph2 = fn2.set_topology("flow")

graph2_enrich = graph2.to("storey.Extend", name="enrich", _fn='({"tag": "something"})')

# add an Ensemble router with two child models (routes)
router = graph2.add_step(mlrun.serving.ModelRouter(), name="router", after="enrich")
router.add_route("m1", class_name="ClassifierModel", model_path='https://s3.wasabisys.
→˓com/iguazio/models/iris/model.pkl')
router.respond()

# Add additional models
#router.add_route("m2", class_name="ClassifierModel", model_path=path2)

# plot the graph (using Graphviz)
graph2.plot(rankdir='LR')
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<graphviz.dot.Digraph at 0x7fd46e4dda50>

fn2_server = fn2.to_mock_server()

result = fn2_server.test("/v2/models/m1/infer", {"inputs": x})

print(result)

> 2021-11-02 04:18:42,142 [info] model m1 was loaded
> 2021-11-02 04:18:42,142 [info] Initializing endpoint records
> 2021-11-02 04:18:42,183 [info] Loaded ['m1']
{'id': 'f713fd7eedeb431eba101b13c53a15b5'}

15.3.4 Building distributed graphs

Graphs can be hosted by a single function (using zero to n containers), or span multiple functions where each function
can have its own container image and resources (replicas, GPUs/CPUs, volumes, etc.). It has a root function, which
is where you configure triggers (http, incoming stream, cron, . . . ), and optional downstream child functions.

You can specify the function attribute in Task or Router steps. This indicates where this step should run. When the
function attribute is not specified it runs on the root function. function="*" means the step can run in any of the
child functions.

Steps on different functions should be connected using a Queue step (a stream).

Adding a child function:

```python
fn.add_child_function('enrich',

'./entity_extraction.ipynb',
image='mlrun/mlrun',
requirements=["storey", "sklearn"])

```

See a full example with child functions.

A distributed graph looks like this:
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15.3.5 Error handling

Graph steps might raise an exception. If you want to have an error handling flow, you can specify an exception handling
step/branch that is triggered on error. The error handler step receives the event that entered the failed step, with two
extra attributes: event.origin_state indicates the name of the failed step; and event.error holds the error string.

Use the graph.error_handler() (apply to all steps) or step.error_handler() (apply to a specific step) if you
want the error from the graph or the step to be fed into a specific step (catcher).

Example of setting an error catcher per step:

graph.add_step("MyClass", name="my-class", after="pre-process").error_handler("catcher")
graph.add_step("ErrHandler", name="catcher", full_event=True, after="")

Note: Additional steps can follow the catcher step.

Using the example in Model serving graph, you can add an error handler as follows:

graph2_enrich.error_handler("catcher")
graph2.add_step("ErrHandler", name="catcher", full_event=True, after="")

<mlrun.serving.states.TaskStep at 0x7fd46e557750>

Now, display the graph again:

graph2.plot(rankdir='LR')

<mlrun.serving.states.TaskStep at 0x7fd46e557750>

Exception stream

The graph errors/exceptions can be pushed into a special error stream. This is very convenient in the case of distributed
and production graphs.

To set the exception stream address (using v3io streams uri):

fn_preprocess2.spec.error_stream = err_stream

15.4 Writing custom steps

The Graph executes built-in task classes, or task classes and functions that you implement. The task parameters include
the following:

• class_name (str): the relative or absolute class name.

• handler (str): the function handler (if class_name is not specified it is the function handler).

• **class_args: a set of class __init__ arguments.

For example, see the following simple echo class:

import mlrun
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# mlrun: start

# echo class, custom class example
class Echo:

def __init__(self, context, name=None, **kw):
self.context = context
self.name = name
self.kw = kw

def do(self, x):
print("Echo:", self.name, x)
return x

# mlrun: end

Test the graph: first convert the code to function, and then add the step to the graph:

fn_echo = mlrun.code_to_function("echo_function", kind="serving", image="mlrun/mlrun")

graph_echo = fn_echo.set_topology("flow")

graph_echo.to(class_name="Echo", name="pre-process", some_arg='abc')

graph_echo.plot(rankdir='LR')

<graphviz.dot.Digraph at 0x7f2d73584c90>

Create a mock server to test this locally:

echo_server = fn_echo.to_mock_server(current_function="*")

result = echo_server.test("", {"inputs": 123})

print(result)

{'id': '97397ea412334afdb5e4cb7d7c2e6dd3'}
Echo: pre-process {'inputs': 123}

For more information, see the Advanced model serving graph notebook example

You can use any Python function by specifying the handler name (e.g. handler=json.dumps). The function is
triggered with the event.body as the first argument, and its result is passed to the next step.

Alternatively, you can use classes that can also store some step/configuration and separate the one time init logic from
the per event logic. The classes are initialized with the class_args. If the class init args contain context or name,
they are initialized with the graph context and the step name.

By default, the class_name and handler specify a class/function name in the globals() (i.e. this module). Alter-
natively, those can be full paths to the class (module.submodule.class), e.g. storey.WriteToParquet. You can also
pass the module as an argument to functions such as function.to_mock_server(namespace=module). In this
case the class or handler names are also searched in the provided module.

When using classes the class event handler is invoked on every event with the event.body. If the Task step
full_event parameter is set to True the handler is invoked and returns the full event object. If the class event
handler is not specified, it invokes the class do() method.
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If you need to implement async behavior, then subclass storey.MapClass.

15.5 Built-in steps

MlRun provides you with many built-in steps that you can use when building your graph.

Click on the step names in the following sections to see the full usage.

• Base Operators

• Data Transformations

• External IO and data enrichment

• Sources

• Targets

• Models

• Routers

• Other

15.5.1 Base Operators

Class name Description
storey.transformations.BatchBatches events. This step emits a batch every max_events events, or when timeout sec-

onds have passed since the first event in the batch was received.
storey.transformations.ChoiceRedirects each input element into one of the multiple downstreams.
storey.Extend Adds fields to each incoming event.
storey.transformations.FilterFilters events based on a user-provided function.
storey.transformations.FlatMapMaps, or transforms, each incoming event into any number of events.
storey.steps.Flatten Flatten is equivalent to FlatMap(lambda x: x).
storey.transformations.ForEachApplies the given function on each event in the stream, and passes the original event down-

stream.
storey.transformations.MapClassSimilar to Map, but instead of a function argument, this class should be extended and its

do() method overridden.
storey.transformations.MapWithStateMaps, or transforms, incoming events using a stateful user-provided function, and an initial

state, which can be a database table.
storey.transformations.PartitionPartitions events by calling a predicate function on each event. Each processed event results

in a Partitioned namedtuple of (left=Optional[Event], right=Optional[Event]).
storey.Reduce Reduces incoming events into a single value that is returned upon the successful termination

of the flow.
storey.transformations.SampleWindowEmits a single event in a window of window_size events, in accordance with emit_period

and emit_before_termination.
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15.5.2 Data Transformations

Class name Description
storey.AggregateByKey Aggregates the data into the table object provided for later persistence, and outputs an

event enriched with the requested aggregation features.
DateExtractor Extract a date-time component.
ml-
run.feature_store.Imputer

Replace None values with default values.

ml-
run.feature_store.MapValues

Map column values to new values.

ml-
run.feature_store.OneHotEncoder

Create new binary fields, one per category (one hot encoded).

ml-
run.feature_store.SetEventMetadata

Set the event metadata (id, key, timestamp) from the event body.

15.5.3 External IO and data enrichment

Class name Description
BatchHttpRequests A class for calling remote endpoints in parallel.
mlrun.datastore.DataItem Data input/output class abstracting access to various local/remote data sources.
storey.transformations.JoinWithTableJoins each event with data from the given table.
JoinWithV3IOTable Joins each event with a V3IO table. Used for event augmentation.
QueryByKey Similar to to AggregateByKey, but this step is for serving only and does not ag-

gregate the event.
RemoteStep Class for calling remote endpoints.
storey.transformations.SendToHttpJoins each event with data from any HTTP source. Used for event augmentation.

15.5.4 Sources

Class name Description
mlrun.datastore.BigQuerySource Reads Google BigQuery query results as input source for a flow.
mlrun.datastore.CSVSource Reads a CSV file as input source for a flow.
DataframeSource Reads data frame as input source for a flow.
mlrun.datastore.HttpSource

mlrun.datastore.KafkaSource Sets the kafka source for the flow.
mlrun.datastore.ParquetSource Reads the Parquet file/dir as the input source for a flow.
mlrun.datastore.StreamSource Sets the stream source for the flow. If the stream doesn’t exist it creates it.
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15.5.5 Targets

Class name Description
ml-
run.datastore.CSVTarget

Writes events to a CSV file.

ml-
run.datastore.NoSqlTarget

Persists the data in table to its associated storage by key.

ml-
run.datastore.ParquetTarget

The Parquet target storage driver, used to materialize feature set/vector data into par-
quet files.

ml-
run.datastore.StreamTarget

Writes all incoming events into a V3IO stream.

storey.transformations.ToDataFrameCreate pandas data frame from events. Can appear in the middle of the flow, as op-
posed to ReduceToDataFrame.

ml-
run.datastore.TSBDTarget

15.5.6 Models

Class name Description
mlrun.frameworks.onnx.ONNXModelServerA model serving class for serving ONYX Models. A sub-class of the

V2ModelServer class.
mlrun.frameworks.pytorch.PyTorchModelServerA model serving class for serving PyTorch Models. A sub-class of the

V2ModelServer class.
mlrun.frameworks.sklearn.SklearnModelServerA model serving class for serving Sklearn Models. A sub-class of the

V2ModelServer class.
mlrun.frameworks.tf_keras.TFKerasModelServerA model serving class for serving TFKeras Models. A sub-class of the

V2ModelServer class.
mlrun.frameworks.xgboost.XGBModelServerA model serving class for serving XGB Models. A sub-class of the

V2ModelServer class.

15.5.7 Routers

Class name Description
ml-
run.serving.EnrichmentModelRouter

Auto enrich the request with data from the feature store. The router input accepts a list of inference
requests (each request can be a dict or a list of incoming features/keys). It enriches the request
with data from the specified feature vector (feature_vector_uri).

ml-
run.serving.EnrichmentVotingEnsemble

Auto enrich the request with data from the feature store. The router input accepts a list of inference
requests (each request can be a dict or a list of incoming features/keys). It enriches the request
with data from the specified feature vector (feature_vector_uri).

ml-
run.serving.ModelRouter

Basic model router, for calling different models per each model path.

ml-
run.serving.VotingEnsemble

An ensemble machine learning model that combines the prediction of several models.

238 Chapter 15. Real-time serving pipelines (graphs)

https://storey.readthedocs.io/en/latest/api.html#storey.targets.CSVTarget
https://storey.readthedocs.io/en/latest/api.html#storey.targets.CSVTarget
https://storey.readthedocs.io/en/latest/api.html#storey.targets.NoSqlTarget
https://storey.readthedocs.io/en/latest/api.html#storey.targets.NoSqlTarget
https://storey.readthedocs.io/en/latest/api.html#storey.targets.ParquetTarget
https://storey.readthedocs.io/en/latest/api.html#storey.targets.ParquetTarget
https://storey.readthedocs.io/en/latest/api.html#storey.targets.StreamTarget
https://storey.readthedocs.io/en/latest/api.html#storey.targets.StreamTarget
https://storey.readthedocs.io/en/latest/api.html#storey.transformations.ToDataFrame
../api/mlrun.serving.html#mlrun.serving.VotingEnsemble
../api/mlrun.serving.html#mlrun.serving.VotingEnsemble


mlrun, Release UNKNOWN

15.5.8 Other

Class name Description
ml-
run.feature_store.FeaturesetValidator

Validate feature values according to the feature set validation policy.

ReduceToDataFrame Builds a pandas DataFrame from events and returns that DataFrame on flow
termination.

15.6 Demos and tutorials

Read these tutorials to get an even better understanding of serving graphs.

15.6.1 Distributed (multi-function) pipeline example

This example demonstrates how to run a pipeline that consists of multiple serverless functions (connected using
streams).

In the pipeline example the request contains the a URL of a file. It loads the content of the file and breaks it into
paragraphs (using the FlatMap class), and pushes the results to a queue/stream. The second function picks up the
paragraphs and runs the NLP flow to extract the entities and push the results to the output stream.

Setting the stream URLs for the internal queue, the final output and error/exceptions stream:

streams_prefix = "v3io:///users/admin/"
internal_stream = streams_prefix + "in-stream"
out_stream = streams_prefix + "out-stream"
err_stream = streams_prefix + "err-stream"

Alternatively, using Kafka:

kafka_prefix = f"kafka://{broker}/"
internal_topic = kafka_prefix + "in-topic"
out_topic = kafka_prefix + "out-topic"
err_topic = kafka_prefix + "err-topic"

In either case, continue with:

# set up the environment
import mlrun
mlrun.set_environment(project="pipe")

> 2021-05-03 14:28:39,987 [warning] Failed resolving version info. Ignoring and using␣
→˓defaults
> 2021-05-03 14:28:43,801 [warning] Unable to parse server or client version. Assuming␣
→˓compatible: {'server_version': '0.6.3-rc4', 'client_version': 'unstable'}

('pipe', '/v3io/projects/{{run.project}}/artifacts')

# uncomment to install spacy requirements locally
# !pip install spacy
# !python -m spacy download en_core_web_sm
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In this example

• Create the pipeline

• Test the pipeline locally

• Deploy to the cluster

Create the pipeline

The pipeline consists of two functions: data-prep and NLP. Each one has different package dependencies.

Create a file with data-prep graph steps:

%%writefile data_prep.py
import mlrun
import json

# load struct from a json file (event points to the url)
def load_url(event):

url = event["url"]
data = mlrun.get_object(url).decode("utf-8")
return {"url": url, "doc": json.loads(data)}

def to_paragraphs(event):
paragraphs = []
url = event["url"]
for i, paragraph in enumerate(event["doc"]):

paragraphs.append(
{"url": url, "paragraph_id": i, "paragraph": paragraph}

)
return paragraphs

Overwriting data_prep.py

Create a file with NLP graph steps (use spacy):

%%writefile nlp.py
import json
import spacy

def myprint(x):
print(x)
return x

class ApplyNLP:
def __init__(self, context=None, spacy_dict="en_core_web_sm"):

self.nlp = spacy.load(spacy_dict)

def do(self, paragraph: dict):
tokenized_paragraphs = []
if isinstance(paragraph, (str, bytes)):

paragraph = json.loads(paragraph)
tokenized = {

(continues on next page)
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(continued from previous page)

"url": paragraph["url"],
"paragraph_id": paragraph["paragraph_id"],
"tokens": self.nlp(paragraph["paragraph"]),

}
tokenized_paragraphs.append(tokenized)

return tokenized_paragraphs

def extract_entities(tokens):
paragraph_entities = []
for token in tokens:

entities = token["tokens"].ents
for entity in entities:

paragraph_entities.append(
{

"url": token["url"],
"paragraph_id": token["paragraph_id"],
"entity": entity.ents,

}
)

return paragraph_entities

def enrich_entities(entities):
enriched_entities = []
for entity in entities:

enriched_entities.append(
{

"url": entity["url"],
"paragraph_id": entity["paragraph_id"],
"entity_text": entity["entity"][0].text,
"entity_start_char": entity["entity"][0].start_char,
"entity_end_char": entity["entity"][0].end_char,
"entity_label": entity["entity"][0].label_,

}
)

return enriched_entities

Overwriting nlp.py

Build and show the graph:

Create the master function (“multi-func”) with the data_prep.py source and an async graph topology. Add a pipeline
of steps made of custom python handlers, classes and built-in classes (like storey.FlatMap).

The pipeline runs across two functions which are connected by a queue/stream (q1). Use the function= to specify
which function runs the specified step. End the flow with writing to the output stream.

# define a new real-time serving function (from code) with an async graph
fn = mlrun.code_to_function("multi-func", filename="./data_prep.py", kind="serving",␣
→˓image='mlrun/mlrun')
graph = fn.set_topology("flow", engine="async")

# define the graph steps (DAG)
(continues on next page)
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graph.to(name="load_url", handler="load_url")\
.to(name="to_paragraphs", handler="to_paragraphs")\
.to("storey.FlatMap", "flatten_paragraphs", _fn="(event)")\
.to(">>", "q1", path=internal_stream)\
.to(name="nlp", class_name="ApplyNLP", function="enrich")\
.to(name="extract_entities", handler="extract_entities", function="enrich")\
.to(name="enrich_entities", handler="enrich_entities", function="enrich")\
.to("storey.FlatMap", "flatten_entities", _fn="(event)", function="enrich")\
.to(name="printer", handler="myprint", function="enrich")\
.to(">>", "output_stream", path=out_stream)

<mlrun.serving.states.QueueState at 0x7f9e618f9910>

# specify the "enrich" child function, add extra package requirements
child = fn.add_child_function('enrich', './nlp.py', 'mlrun/mlrun')
child.spec.build.commands = ["python -m pip install spacy",

"python -m spacy download en_core_web_sm"]
graph.plot(rankdir='LR')

<graphviz.dot.Digraph at 0x7f9dd5dbed90>

Test the pipeline locally

Create an input file:

%%writefile in.json
["Born and raised in Queens, New York City, Trump attended Fordham University for two␣
→˓years and received a bachelor's degree in economics from the Wharton School of the␣
→˓University of Pennsylvania. He became president of his father Fred Trump's real estate␣
→˓business in 1971, renamed it The Trump Organization, and expanded its operations to␣
→˓building or renovating skyscrapers, hotels, casinos, and golf courses. Trump later␣
→˓started various side ventures, mostly by licensing his name. Trump and his businesses␣
→˓have been involved in more than 4,000 state and federal legal actions, including six␣
→˓bankruptcies. He owned the Miss Universe brand of beauty pageants from 1996 to 2015,␣
→˓and produced and hosted the reality television series The Apprentice from 2004 to 2015.
→˓",
"Trump's political positions have been described as populist, protectionist,␣
→˓isolationist, and nationalist. He entered the 2016 presidential race as a Republican␣
→˓and was elected in a surprise electoral college victory over Democratic nominee␣
→˓Hillary Clinton while losing the popular vote.[a] He became the oldest first-term U.S.␣
→˓president[b] and the first without prior military or government service. His election␣
→˓and policies have sparked numerous protests. Trump has made many false or misleading␣
→˓statements during his campaign and presidency. The statements have been documented by␣
→˓fact-checkers, and the media have widely described the phenomenon as unprecedented in␣
→˓American politics. Many of his comments and actions have been characterized as␣
→˓racially charged or racist."]

Overwriting in.json

Create a mock server (simulator) and test:
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# tuggle verbosity if needed
fn.verbose = False

to
# create a mock server (simulator), specify to simulate all the functions in the␣
→˓pipeline ("*")
server = fn.to_mock_server(current_function="*")

# push a sample request into the pipeline and see the results print out (by the printer␣
→˓step)
resp = server.test(body={"url": "in.json"})

{'url': 'in.json', 'paragraph_id': 0, 'entity_text': 'Queens', 'entity_start_char': 19,
→˓'entity_end_char': 25, 'entity_label': 'GPE'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': 'New York City', 'entity_start_char
→˓': 27, 'entity_end_char': 40, 'entity_label': 'GPE'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': 'Trump', 'entity_start_char': 42,
→˓'entity_end_char': 47, 'entity_label': 'ORG'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': 'Fordham University', 'entity_start_
→˓char': 57, 'entity_end_char': 75, 'entity_label': 'ORG'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': 'two years', 'entity_start_char':␣
→˓80, 'entity_end_char': 89, 'entity_label': 'DATE'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': 'the Wharton School of the␣
→˓University of Pennsylvania', 'entity_start_char': 141, 'entity_end_char': 193, 'entity_
→˓label': 'ORG'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': 'Fred Trump', 'entity_start_char':␣
→˓229, 'entity_end_char': 239, 'entity_label': 'PERSON'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': '1971', 'entity_start_char': 266,
→˓'entity_end_char': 270, 'entity_label': 'DATE'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': 'The Trump Organization', 'entity_
→˓start_char': 283, 'entity_end_char': 305, 'entity_label': 'ORG'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': 'more than 4,000', 'entity_start_
→˓char': 529, 'entity_end_char': 544, 'entity_label': 'CARDINAL'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': 'six', 'entity_start_char': 588,
→˓'entity_end_char': 591, 'entity_label': 'CARDINAL'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': 'Universe', 'entity_start_char':␣
→˓624, 'entity_end_char': 632, 'entity_label': 'PERSON'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': '1996 to 2015', 'entity_start_char
→˓': 663, 'entity_end_char': 675, 'entity_label': 'DATE'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': 'The Apprentice', 'entity_start_char
→˓': 731, 'entity_end_char': 745, 'entity_label': 'WORK_OF_ART'}
{'url': 'in.json', 'paragraph_id': 0, 'entity_text': '2004 to 2015', 'entity_start_char
→˓': 751, 'entity_end_char': 763, 'entity_label': 'DATE'}
{'url': 'in.json', 'paragraph_id': 1, 'entity_text': 'Trump', 'entity_start_char': 0,
→˓'entity_end_char': 5, 'entity_label': 'ORG'}
{'url': 'in.json', 'paragraph_id': 1, 'entity_text': '2016', 'entity_start_char': 122,
→˓'entity_end_char': 126, 'entity_label': 'DATE'}
{'url': 'in.json', 'paragraph_id': 1, 'entity_text': 'Republican', 'entity_start_char':␣
→˓150, 'entity_end_char': 160, 'entity_label': 'NORP'}
{'url': 'in.json', 'paragraph_id': 1, 'entity_text': 'Democratic', 'entity_start_char':␣
→˓222, 'entity_end_char': 232, 'entity_label': 'NORP'}
{'url': 'in.json', 'paragraph_id': 1, 'entity_text': 'Hillary Clinton', 'entity_start_
→˓char': 241, 'entity_end_char': 256, 'entity_label': 'PERSON'} (continues on next page)
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{'url': 'in.json', 'paragraph_id': 1, 'entity_text': 'first', 'entity_start_char': 312,
→˓'entity_end_char': 317, 'entity_label': 'ORDINAL'}
{'url': 'in.json', 'paragraph_id': 1, 'entity_text': 'U.S.', 'entity_start_char': 323,
→˓'entity_end_char': 327, 'entity_label': 'GPE'}
{'url': 'in.json', 'paragraph_id': 1, 'entity_text': 'first', 'entity_start_char': 349,
→˓'entity_end_char': 354, 'entity_label': 'ORDINAL'}
{'url': 'in.json', 'paragraph_id': 1, 'entity_text': 'American', 'entity_start_char':␣
→˓671, 'entity_end_char': 679, 'entity_label': 'NORP'}

server.wait_for_completion()

Deploy to the cluster

# add credentials to the data/streams
fn.apply(mlrun.platforms.v3io_cred())
child.apply(mlrun.platforms.v3io_cred())

# specify the error stream (to store exceptions from the functions)
fn.spec.error_stream = err_stream

# deploy as a set of serverless functions
fn.deploy()

> 2021-05-03 14:33:55,400 [info] deploy child function enrich ...
> 2021-05-03 14:33:55,427 [info] Starting remote function deploy
2021-05-03 14:33:55 (info) Deploying function
2021-05-03 14:33:55 (info) Building
2021-05-03 14:33:55 (info) Staging files and preparing base images
2021-05-03 14:33:55 (info) Building processor image
2021-05-03 14:34:02 (info) Build complete
2021-05-03 14:34:08 (info) Function deploy complete
> 2021-05-03 14:34:09,232 [info] function deployed, address=default-tenant.app.yh30.
→˓iguazio-c0.com:32356
> 2021-05-03 14:34:09,233 [info] deploy root function multi-func ...
> 2021-05-03 14:34:09,234 [info] Starting remote function deploy
2021-05-03 14:34:09 (info) Deploying function
2021-05-03 14:34:09 (info) Building
2021-05-03 14:34:09 (info) Staging files and preparing base images
2021-05-03 14:34:09 (info) Building processor image
2021-05-03 14:34:16 (info) Build complete
2021-05-03 14:34:22 (info) Function deploy complete
> 2021-05-03 14:34:22,891 [info] function deployed, address=default-tenant.app.yh30.
→˓iguazio-c0.com:32046

'http://default-tenant.app.yh30.iguazio-c0.com:32046'

Listen on the output stream

You can use the SDK or CLI to listen on the output stream. Listening should be done in a separate console/notebook.
Run:
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mlrun watch-stream v3io:///users/admin/out-stream -j

or use the SDK:

from mlrun.platforms import watch_stream
watch_stream("v3io:///users/admin/out-stream", is_json=True)

Test the live function:

Note: The url must be a valid path to the input file.

fn.invoke('', body={"url": "v3io:///users/admin/pipe/in.json"})

{'id': '79354e45-a158-405f-811c-976e9cf4ab5e'}

15.6.2 Advanced model serving graph - notebook example

This example demonstrates how to use MLRun serving graphs and their advanced functionality including:

• Use of flow, task, model, and ensemble router states

• Build tasks from custom handlers, classes and storey components

• Use custom error handlers

• Test graphs locally

• Deploy the graph as a real-time serverless functions

In this example

• Define functions and classes used in the graph

• Create a new serving function and graph

• Test the function locally

• Deploy the graph as a real-time serverless function

Define functions and classes used in the graph

from cloudpickle import load
from typing import List
from sklearn.datasets import load_iris
import numpy as np

# model serving class example
class ClassifierModel(mlrun.serving.V2ModelServer):

def load(self):
"""load and initialize the model and/or other elements"""
model_file, extra_data = self.get_model('.pkl')
self.model = load(open(model_file, 'rb'))

def predict(self, body: dict) -> List:
(continues on next page)
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"""Generate model predictions from sample."""
feats = np.asarray(body['inputs'])
result: np.ndarray = self.model.predict(feats)
return result.tolist()

# echo class, custom class example
class Echo:

def __init__(self, context, name=None, **kw):
self.context = context
self.name = name
self.kw = kw

def do(self, x):
print("Echo:", self.name, x)
return x

# error echo function, demo catching error and using custom function
def error_catcher(x):

x.body = {"body": x.body, "origin_state": x.origin_state, "error": x.error}
print("EchoError:", x)
return None

# mark the end of the code section, DO NOT REMOVE !
# mlrun: end-code

Create a new serving function and graph

Use code_to_function to convert the above code into a serving function object and initialize a graph with async
flow topology.

function = mlrun.code_to_function("advanced", kind="serving",
image="mlrun/mlrun",
requirements=['storey'])

graph = function.set_topology("flow", engine="async")
#function.verbose = True

Specify the sklearn models that are used in the ensemble.

models_path = 'https://s3.wasabisys.com/iguazio/models/iris/model.pkl'
path1 = models_path
path2 = models_path

Build and connect the graph (DAG) using the custom function and classes and plot the result. Add states using the
state.to() method (adds a new state after the current one), or using the graph.add_step() method.

Use the graph.error_handler() (apply to all states) or state.error_handler() (apply to a specific state) if you
want the error from the graph or the state to be fed into a specific state (catcher).

You can specify which state is the responder (returns the HTTP response) using the state.respond() method. If
you don’t specify the responder, the graph is non-blocking.
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# use built-in storey class or our custom Echo class to create and link Task states
graph.to("storey.Extend", name="enrich", _fn='({"tag": "something"})') \

.to(class_name="Echo", name="pre-process", some_arg='abc').error_handler("catcher")

# add an Ensemble router with two child models (routes). The "*" prefix mark it is a␣
→˓router class
router = graph.add_step("*mlrun.serving.VotingEnsemble", name="ensemble", after="pre-
→˓process")
router.add_route("m1", class_name="ClassifierModel", model_path=path1)
router.add_route("m2", class_name="ClassifierModel", model_path=path2)

# add the final step (after the router) that handles post processing and responds to the␣
→˓client
graph.add_step(class_name="Echo", name="final", after="ensemble").respond()

# add error handling state, run only when/if the "pre-process" state fails (keep after="
→˓")
graph.add_step(handler="error_catcher", name="catcher", full_event=True, after="")

# plot the graph (using Graphviz) and run a test
graph.plot(rankdir='LR')

<graphviz.dot.Digraph at 0x7fe03f6941d0>

Test the function locally

Create a test set.

import random
iris = load_iris()
x = random.sample(iris['data'].tolist(), 5)

Create a mock server (simulator) and test the graph with the test data.

Note: The model and router objects support a common serving protocol API, see the protocol and API
section.

server = function.to_mock_server()
resp = server.test("/v2/models/infer", body={"inputs": x})
server.wait_for_completion()
resp

> 2021-01-09 22:49:26,365 [info] model m1 was loaded
> 2021-01-09 22:49:26,493 [info] model m2 was loaded
> 2021-01-09 22:49:26,494 [info] Loaded ['m1', 'm2']
Echo: pre-process {'inputs': [[6.9, 3.2, 5.7, 2.3], [6.4, 2.7, 5.3, 1.9], [4.9, 3.1, 1.5,
→˓ 0.1], [7.3, 2.9, 6.3, 1.8], [5.4, 3.7, 1.5, 0.2]], 'tag': 'something'}
Echo: final {'model_name': 'ensemble', 'outputs': [2, 2, 0, 2, 0], 'id':
→˓'0ebcc5f6f4c24d4d83eb36391eaefb98'}
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{'model_name': 'ensemble',
'outputs': [2, 2, 0, 2, 0],
'id': '0ebcc5f6f4c24d4d83eb36391eaefb98'}

Deploy the graph as a real-time serverless function

function.deploy()

> 2021-01-09 22:49:40,088 [info] Starting remote function deploy
2021-01-09 22:49:40 (info) Deploying function
2021-01-09 22:49:40 (info) Building
2021-01-09 22:49:40 (info) Staging files and preparing base images
2021-01-09 22:49:40 (info) Building processor image
2021-01-09 22:49:41 (info) Build complete
2021-01-09 22:49:47 (info) Function deploy complete
> 2021-01-09 22:49:48,422 [info] function deployed, address=default-tenant.app.yh55.
→˓iguazio-cd0.com:32222

'http://default-tenant.app.yh55.iguazio-cd0.com:32222'

Invoke the remote function using the test data

function.invoke("/v2/models/infer", body={"inputs": x})

{'model_name': 'ensemble',
'outputs': [1, 2, 0, 0, 0],
'id': '0ebcc5f6f4c24d4d83eb36391eaefb98'}

See the MLRun demos repository for additional use cases and full end-to-end examples, including Fraud Prevention
using the Iguazio feature store, a mask detection demo, and converting existing ML code to an MLRun project.
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15.7 Serving graph high availability configuration

This figure illustrates a simplistic flow of an MLRun serving graph with remote invocation:

As explained in Real-time serving pipelines (graphs), the serving graph is based on Nuclio functions.

In this section

• Using Nuclio with stream triggers

• Consumer function configuration

• Remote function retry mechanism

• Configuration considerations

15.7.1 Using Nuclio with stream triggers

Nuclio can use different trigger types. When used with stream triggers, such as Kafka and V3IO, it uses a consumer
group to continue reading from the last processed offset on function restart. This provides the “at least once” semantics
for stateless functions. However, if the function does have state, such as persisting a batch of events to storage (e.g.
parquet files, database) or if the function performs additional processing of events after the function handler returns,
then the flow can get into situations where events seem to be lost. The mechanism of Window ACK provides a solution
for such stateful event processing.

With Window ACK, the consumer group’s committed offset is delayed by one window, committing the offset at (pro-
cessed event num – window). When the function restarts (for any reason including scale-up or scale-down), it starts
consuming from this last committed point.

The size of the required Window ACK is based on the number of events that could be in processing when the function
terminates. You can define a window ACK per trigger (Kafka, V3IO stream, etc.). When used with a serving graph,
the appropriate Window ACK size depends on the graph structure and should be calculated accordingly. The following
sections explain the relevant considerations.
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15.7.2 Consumer function configuration

A consumer function is essentially a Nuclio function with a stream trigger. As part of the trigger, you can set a consumer
group.

When the consumer function is part of a graph then the consumer function’s number of replicas is derived from the
number of shards and is therefore nonconfigurable. The same applies to the number of workers in each replica, which
is set to 1 and is not configurable.

The consumer function has one buffer per worker holding the incoming events that were received by the worker and
are waiting to be processed. Once this buffer is full, events need to be processed so that the function is able to receive
more events. The buffer size is configurable and is key to the overall configuration.

The buffer should be as small as possible. There is a trade-off between the buffer size and the latency. A larger buffer
has lower latency but increases the recovery time after a failure, due to the high number of records that need to be
reprocessed. To set the buffer size:

function.spec.parameters["source_args"] = {"buffer_size": 1}

The default buffer_size is 8.

15.7.3 Remote function retry mechanism

The required processing time of a remote function varies, depending on the function. The system assumes a process-
ing time in the order of seconds, which affects the default configurations. However, some functions require a longer
processing time. You can configure the timeout on both the caller and on the remote, as appropriate for your functions.

When an event is sent to the remote function, and no response is received by the configured (or default) timeout, or an
error 500 (the remote function failed), or error 502, 503, or 504 (the remote function is too busy to handle the request
at this time) is received, the caller retries the request, using the platform’s exponential retry backoff mechanism. If the
number of caller retries reaches the configured maximum number of retries, the event is pushed to the exception stream,
indicating that this event did not complete successfully. You can look at the exception stream to see the functions that
did not complete successfully.

Remote-function caller configuration

In a simplistic flow these are the consumer function defaults:

• Maximum retries: The default is 6, which is equivalent to about 3-4 minutes if all of the related parameters are at
their default values. If you expect that some cases will require a higher number, for example, a new node needs
to be scaled up depending on your cloud vendor, the instance type, and the zone you are running in, you might
want to increase the number of retries.

• Remote step http timeout: The time interval the caller waits for a response from the remote before retrying the
request. This value is affected by the remote function processing time.

• Max in flight: The maximum number of requests that each caller worker can send in parallel to the remote
function. If the caller has more than one worker, each worker has its own Max in flight.

To set Max in flight, timeout, and retries:

RemoteStep(name=”remote_scale”, ..., max_in_flight=2, timeout=100, retries=10)
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Remote-function configuration

For the remote function, you can configure the following:

• Worker timeout: The maximum time interval, in seconds, an incoming request waits for an available worker. The
worker timeout must be shorter than the gateway timeout. The default is 10.

• Gateway timeout: The maximum time interval, in seconds, the gateway waits for a response to a request. This de-
termines when the ingress times out on a request. It must be slightly longer than the expected function processing
time. The default is 60.

To set the buffer gateway timeout and worker timeout:

my_serving_func.with_http(gateway_timeout=125, worker_timeout=60)

15.7.4 Configuration considerations

The following figure zooms in on a single consumer and its workers and illustrates the vari-
ous concepts and parameters that provide high availability, using a non-default configuration.

• Assume the processing time of the remote function is Pt, in seconds.

• timeout: Between <Pt+epsilon> and <Pt+worker_timeout>.

• Serving function

– gateway_timeout: Pt+1 second (usually sufficient).

– worker_timeout: The general rule is the greater of Pt/10 or 60 seconds. However, you should adjust the
value according to your needs.

• max_in_flight: If the processing time is very high then max_in_flight should be low. Otherwise, there will
be many retries.

• ack_window_size:

– With 1 worker: The consumer buffer_size+max_in_flight, since it is per each shard and there is a
single worker.

– With >1 worker: The consumer (#workers x buffer_size)+max_in_flight
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Make sure you thoroughly understand your serving graph and its functions before defining the ack_window_size. Its
value depends on the entire graph flow. You need to understand which steps are parallel (branching) vs. sequential
invocation. Another key aspect is that the number of workers affects the window size.

See the ack_window_size API.

For example:

• If a graph includes: consumer -> remote r1 -> remote r2

– The window should be the sum of: consumer’s buffer size + MIF to r1 + MIF to r2.

• If a graph includes: calling to remote r1 and r2 in parallel

– The window should be set to: consumer’s buffer size + max (MIF to r1, MIF to r2).

15.8 Error handling

Graph steps might raise an exception. If you want to have an error handling flow, you can specify an exception handling
step/branch that is triggered on error. The error handler step receives the event that entered the failed step, with two
extra attributes: event.origin_state indicates the name of the failed step; and event.error holds the error string.

Use the graph.error_handler() (apply to all steps) or step.error_handler() (apply to a specific step) if you
want the error from the graph or the step to be fed into a specific step (catcher).

Example of setting an error catcher per step:

graph.add_step("MyClass", name="my-class", after="pre-process").error_handler("catcher")
graph.add_step("ErrHandler", name="catcher", full_event=True, after="")

Note

Additional steps can follow the catcher step.

Using the example in Model serving graph, you can add an error handler as follows:

graph2_enrich.error_handler("catcher")
graph2.add_step("ErrHandler", name="catcher", full_event=True, after="")

<mlrun.serving.states.TaskStep at 0x7fd46e557750>

Now, display the graph again:

graph2.plot(rankdir='LR')

<mlrun.serving.states.TaskStep at 0x7fd46e557750>
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15.8.1 Exception stream

The graph errors/exceptions can be pushed into a special error stream. This is very convenient in the case of distributed
and production graphs.

To set the exception stream address (using v3io streams uri):

fn_preprocess2.spec.error_stream = err_stream
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SIXTEEN

MODEL SERVING

MLRun model serving allows composition of multi-stage, real-time pipelines, that include data manipulation and exe-
cution of models. The architecture allows high scalability while maintaining low latency performance.

16.1 Basic model serving

The most basic model serving capability is deployment of a single model. To do that, you:

1. Create an MLRun function of type serving that implements a serving class with the load and predict meth-
ods. MLRun function marketplace comes with a range of such functions that support the most common frame-
works.

2. Add the model to the function, using the add_model() method.

3. Test and deploy a model server, using the deploy() method.

This results in a single model endpoint that can execute the model and return the model prediction.

See Basic model serving class and Using built-in model serving classes.

Optionally, you can create a mock server, which runs the model as an in-memory object within your development
environment. This allows testing the model without deploying it.

16.2 Routers and ensembles

A single serving function can host more than a single model. You can call add_model multiple times and specify a
different model per each model key. Each add_model creates another model endpoint.

You can also create an ensemble of models, where a call to one model endpoint combines the results of other models
together.
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16.3 Model serving pipeline

Model execution is usually part of a greater pipeline, and the model serving is just a single step in that pipeline. Usually,
there is a range of data processing that occurs before and after the model is executed. The process may even involve
more than a single model in the pipeline, and/or filters and rules, related to the execution of the models.

MLRun implements model serving pipeline using its graph capabilities. This gives the capability to define steps, such
as data processing, data enrichment, and data manipulation, prior to calling the model as well as perform steps after
the model is executed, by performing additional steps on the model output.
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SEVENTEEN

WORKFLOWS

A workflow is a definition of execution of functions. It defines the order of execution of multiple dependent steps in a
DAG. A workflow can reference the project’s params, secrets, artifacts, etc. It can also use a function execution output
as a function execution input (which, of course, defines the order of execution).

MLRun supports running workflows on a local or kubeflow pipeline engine. The local engine runs the workflow
as a local process, which is simpler for debugging and running simple/sequential tasks. The kubeflow (“kfp”) engine
runs as a task over the cluster and supports more advanced operations (conditions, branches, etc.). You can select the
engine at runtime. Kubeflow-specific directives like conditions and branches are not supported by the local engine.

Workflows are saved/registered in the project using the set_workflow().
Workflows are executed using the run() method or using the CLI command mlrun project.

See full details in Workflows.
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EIGHTEEN

MODEL MONITORING

By definition, ML models in production make inferences on constantly changing data. Even models that have been
trained on massive data sets, with the most meticulously labelled data, start to degrade over time, due to concept drift.
Changes in the live environment due to changing behavioral patterns, seasonal shifts, new regulatory environments,
market volatility, etc., can have a big impact on a trained model’s ability to make accurate predictions.

Model performance monitoring is a basic operational task that is implemented after an AI model has been deployed.
Model monitoring includes:

• Built-in model monitoring: Machine learning model monitoring is natively built in to the Iguazio MLOps Plat-
form, along with a wide range of model management features and ML monitoring reports. It monitors all of your
models in a single, simple, dashboard.

• Automated drift detection: Automatically detects concept drift, anomalies, data skew, and model drift in real-
time. Even if you are running hundreds of models simultaneously, you can be sure to spot and remediate the one
that has drifted.

• Automated retraining: When drift is detected, Iguazio automatically starts the entire training pipeline to retrain
the model, including all relevant steps in the pipeline. The output is a production-ready challenger model, ready
to be deployed. This keeps your models up to date, automatically.

• Native feature store integration: Feature vectors and labels are stored and analyzed in the Iguazio feature store and
are easily compared to the trained features and labels running as part of the model development phase, making
it easier for data science teams to collaborate and maintain consistency between AI projects.

See full details and examples in Model monitoring.
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NINETEEN

CI/CD AND AUTOMATION

You can run your ML Pipelines using CI frameworks like Github Actions, GitLab CI/CD, etc. MLRun supports a
simple and native integration with the CI systems.

• Build/run complex workflows composed of local/library functions or external cloud services (e.g. AutoML)

• Support various Pipeline/CI engines (Kubeflow, GitHub, Gitlab, Jenkins)

• Track & version code, data, params, results with minimal effort

• Elastic scaling of each step

• Extensive function marketplace

See full details and examples in CI/CD, rolling upgrades, git.
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TWENTY

DATA STORES

A data store defines a storage provider (e.g. file system, S3, Azure blob, Iguazio v3io, etc.).

In this section

• Shared data stores

• Storage credentials and parameters

– v3io

– S3

– Azure Blob storage

– Google cloud storage

20.1 Shared data stores

MLRun supports multiple data stores. (More can easily added by extending the DataStore class.) Data stores are
referred to using the schema prefix (e.g. s3://my-bucket/path). The currently supported schemas and their urls:

• files — local/shared file paths, format: /file-dir/path/to/file

• http, https — read data from HTTP sources (read-only), format: https://host/path/to/file

• s3 — S3 objects (AWS or other endpoints), format: s3://<bucket>/path/to/file

• v3io, v3ios — Iguazio v3io data fabric, format: v3io://[<remote-host>]/<data-container>/path/to/
file

• az — Azure Blob storage, format: az://<container>/path/to/file

• gs, gcs — Google Cloud Storage objects, format: gs://<bucket>/path/to/file

• store — MLRun versioned artifacts (see Artifacts), format: store://artifacts/<project>/
<artifact-name>[:tag]

• memory — in memory data registry for passing data within the same process, format memory://key, use
mlrun.datastore.set_in_memory_item(key, value) to register in memory data items (byte buffers or
DataFrames).
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20.2 Storage credentials and parameters

Data stores might require connection credentials. These can be provided through environment variables or project/job
context secrets. The exact credentials depend on the type of the data store and are listed in the following table. Each
parameter specified can be provided as an environment variable, or as a project-secret that has the same key as the name
of the parameter.

MLRun jobs executed remotely run in independent pods, with their own environment. When setting an environment
variable in the development environment (for example Jupyter), this has no effect on the executing pods. Therefore,
before executing jobs that require access to storage credentials, these need to be provided by assigning environment
variables to the MLRun runtime itself, assigning secrets to it, or placing the variables in project-secrets.

Warning: Passing secrets as environment variables to runtimes is discouraged, as they are exposed in the pod
spec. Refer to Working with secrets for details on secret handling in MLRun.

For example, running a function locally:

# Access object in AWS S3, in the "input-data" bucket
source_url = "s3://input-data/input_data.csv"

os.environ["AWS_ACCESS_KEY_ID"] = "<access key ID>"
os.environ["AWS_SECRET_ACCESS_KEY"] = "<access key>"

# Execute a function that reads from the object pointed at by source_url.
# When running locally, the function can use the local environment variables.
local_run = func.run(name='aws_test', inputs={'source_url': source_url}, local=True)

Running the same function remotely:

# Executing the function remotely using env variables (not recommended!)
func.set_env("AWS_ACCESS_KEY_ID", "<access key ID>").set_env("AWS_SECRET_ACCESS_KEY", "
→˓<access key>")
remote_run = func.run(name='aws_test', inputs={'source_url': source_url})

# Using project-secrets (recommended) - project secrets are automatically mounted to␣
→˓project functions
secrets = {"AWS_ACCESS_KEY_ID": "<access key ID>", "AWS_SECRET_ACCESS_KEY": "<access key>
→˓"}
db = mlrun.get_run_db()
db.create_project_secrets(project=project_name, provider="kubernetes", secrets=secrets)

remote_run = func.run(name='aws_test', inputs={'source_url': source_url})

The following sections list the credentials and configuration parameters applicable to each storage type.
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20.2.1 v3io

When running in an Iguazio system, MLRun automatically configures executed functions to use v3io storage, and
passes the needed parameters (such as access-key) for authentication. Refer to the auto-mount section for more details
on this process.

In some cases, the v3io configuration needs to be overridden. The following parameters can be configured:

• V3IO_API — URL pointing to the v3io web-API service.

• V3IO_ACCESS_KEY — access key used to authenticate with the web API.

• V3IO_USERNAME — the user-name authenticating with v3io. While not strictly required when using an access-
key to authenticate, it is used in several use-cases, such as resolving paths to the home-directory.

20.2.2 S3

• AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY — access key parameters

• S3_ENDPOINT_URL — the S3 endpoint to use. If not specified, it defaults to AWS. For example, to access a
storage bucket in Wasabi storage, use S3_ENDPOINT_URL = "https://s3.wasabisys.com"

• MLRUN_AWS_ROLE_ARN — IAM role to assume. Connect to AWS using the secret key and ac-
cess key, and assume the role whose ARN is provided. The ARN must be of the format
arn:aws:iam::<account-of-role-to-assume>:role/<name-of-role>

• AWS_PROFILE — name of credentials profile from a local AWS credentials file. When using a profile, the au-
thentication secrets (if defined) are ignored, and credentials are retrieved from the file. This option should be
used for local development where AWS credentials already exist (created by aws CLI, for example)

20.2.3 Azure Blob storage

The Azure Blob storage can utilize several methods of authentication. Each requires a different set of parameters as
listed here:

Authentication
method

Parameters

Connection string AZURE_STORAGE_CONNECTION_STRING
SAS token AZURE_STORAGE_ACCOUNT_NAMEAZURE_STORAGE_SAS_TOKEN
Account key AZURE_STORAGE_ACCOUNT_NAMEAZURE_STORAGE_KEY
Service principal with a
client secret

AZURE_STORAGE_ACCOUNT_NAMEAZURE_STORAGE_CLIENT_IDAZURE_STORAGE_CLIENT_SECRETAZURE_STORAGE_TENANT_ID

Note: The AZURE_STORAGE_CONNECTION_STRING configuration uses the BlobServiceClient to access objects.
This has limited functionality and cannot be used to access Azure Datalake storage objects. In this case use one of the
other authentication methods that use the fsspec mechanism.
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20.2.4 Google cloud storage

• GOOGLE_APPLICATION_CREDENTIALS — path to the application credentials to use (in the form of a JSON file).
This can be used if this file is located in a location on shared storage, accessible to pods executing MLRun jobs.

• GCP_CREDENTIALS — when the credentials file cannot be mounted to the pod, this environment variable may
contain the contents of this file. If configured in the function pod, MLRun dumps its contents to a temporary file
and points GOOGLE_APPLICATION_CREDENTIALS at it.
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INGESTING DATA

MLRun provides a set of tools and capabilities to streamline the task of data ingestion and processing. For an end-
to-end framework for data processing, management, and serving, MLRun has the feature-store capabilities, which are
described in Feature store. However, in many cases the full feature-store capabilities are not needed, in which cases
MLRun provides a set of utilities to facilitate data ingestion, collection and processing.

21.1 Connecting to data sources

Accessing data from multiple source types is possible through MLRun’s DataItem object. This object plugs into the
data-stores framework to connect to various types of data sources and download content. For example, to download
data which is stored on S3 and load it into a DataFrame, use the following code:

# Access object in AWS S3, in the "input-data" bucket
import mlrun

# Access credentials
os.environ["AWS_ACCESS_KEY_ID"] = "<access key ID>"
os.environ["AWS_SECRET_ACCESS_KEY"] = "<access key>"

source_url = "s3://input-data/input_data.csv"

input_data = mlrun.get_dataitem(source_url).as_df()

This code runs locally (for example, in Jupyter) and relies on environment variables to supply credentials for data
access. See Data stores for more info on the available data-stores, accessing them locally and remotely, and how to
provide credentials for connecting.

Running the code locally is very useful for easy debugging and development of the code. When the code moves to a
stable status, it is usually recommended to run it “remotely” on a pod running in the Kubernetes cluster. This allows
setting up specific resources to the processing pod (such as memory, CPU and execution priority).

MLRun provides facilities to create DataItem objects as inputs to running code. For example, this is a basic data
ingestion function:

def ingest_data(context, source_url: mlrun.DataItem):
# Load the data from its source, and convert to a DataFrame
df = source_url.as_df()

# Perform data cleaning and processing
# ...

(continues on next page)
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# Save the processed data to the artifact store
context.log_dataset('cleaned_data', df=df, format='csv')

This code can be placed in a python file, or as a cell in the Python notebook. For example, if the code above was saved
to a file, the following code creates an MLRun function from it and executes it remotely in a pod:

# create a function from py or notebook (ipynb) file, specify the default function␣
→˓handler
ingest_func = mlrun.code_to_function(name='ingest_data', filename='./ingest_data.py',

kind='job', image='mlrun/mlrun')

source_url = "s3://input-data/input_data.csv"

ingest_data_run = ingest_func.run(name='ingest_data',
handler=ingest_data,
inputs={'source_url': source_url},
local=False)

As the source_url is part of the function’s inputs, MLRun automatically wraps it up with a DataItem. The output
is logged to the function’s artifact_path, and can be obtained from the run result:

cleaned_data_frame = ingest_data_run.artifact('cleaned_data').as_df()

Note that running the function remotely may require attaching storage to the function, as well as passing storage cre-
dentials through project secrets. See the following pages for more details:

1. Attach storage to functions

2. Working with secrets

21.2 Data processing

Once the data is imported from its source, it can be processed using any framework. MLRun natively supports working
with Pandas DataFrames and converting from and to its DataItem object.

For distributed processing of very large datasets, MLRun integrates with the Spark processing engine, and provides
facilities for executing pySpark code using a Spark service (which can be deployed by the platform when running
MLRun as part of an Iguazio system) or through submitting the processing task to Spark-operator. The following page
provides additional details and code-samples:

1. Spark operator

In a similar manner, Dask can be used for parallel processing of the data. To read data as a Dask DataFrame, use the
following code:

import dask.dataframe as dd

data_item = mlrun.get_dataitem(source_url)
dask_df: dd.DataFrame = data_item.as_df(df_module=dd)
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LOGGING DATASETS

Storing datasets is important in order to have a record of the data that was used to train models, as well as storing any
processed data. MLRun comes with built-in support for the DataFrame format. MLRun not only stores the DataFrame,
but it also provides information about the data, such as statistics.

The simplest way to store a dataset is with the following code:

context.log_dataset(key='my_data', df=df)

Where key is the name of the artifact and df is the DataFrame. By default, MLRun stores a short preview of 20 lines.
You can change the number of lines by changing the value of the preview parameter.

MLRun also calculates statistics on the DataFrame on all numeric fields. You can enable statistics regardless to the
DataFrame size by setting the stats parameter to True.

22.1 Logging a dataset from a job

The following example shows how to work with datasets from a job:

from os import path
from mlrun.execution import MLClientCtx
from mlrun.datastore import DataItem

# Ingest a data set into the platform
def get_data(context: MLClientCtx, source_url: DataItem, format: str = 'csv'):

iris_dataset = source_url.as_df()

target_path = path.join(context.artifact_path, 'data')
# Optionally print data to your logger
context.logger.info('Saving Iris data set to {} ...'.format(target_path))

# Store the data set in your artifacts database
context.log_dataset('iris_dataset', df=iris_dataset, format=format,

index=False, artifact_path=target_path)

You can run this function locally or as a job. For example, to run it locally:

from os import path
from mlrun import new_project, run_local, mlconf

(continues on next page)
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project_name = 'my-project'
project_path = path.abspath('conf')
project = new_project(project_name, project_path, init_git=True)

# Target location for storing pipeline artifacts
artifact_path = path.abspath('jobs')
# MLRun DB path or API service URL
mlconf.dbpath = mlconf.dbpath or 'http://mlrun-api:8080'

source_url = 'https://s3.wasabisys.com/iguazio/data/iris/iris_dataset.csv'
# Run get-data function locally
get_data_run = run_local(name='get_data',

handler=get_data,
inputs={'source_url': source_url},
project=project_name,
artifact_path=artifact_path)

The dataset location is returned in the outputs field, therefore you can get the location by calling get_data_run.
artifact('iris_dataset') to get the dataset itself.

# Read your data set
get_data_run.artifact('iris_dataset').as_df()

# Visualize an artifact in Jupyter (image, html, df, ..)
get_data_run.artifact('confusion-matrix').show()

The dataset returned from the run result is of the DataItem type. It allows access to the data itself as a Pandas Dataframe
by calling the dataset.as_df(). It also contains the metadata of the artifact, accessed by the using dataset.meta.
This artifact metadata object contains in it the statistics calculated, the schema of the dataset and other fields describing
the dataset. For example, call dataset.meta.stats to obtain the data statistics.
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FEATURE STORE: DATA INGESTION

Learn how to ingest data into the feature store, with transformations, using the supported engines.

In this section

23.1 Feature sets

In MLRun, a group of features can be ingested together and stored in logical group called feature set. Feature sets
take data from offline or online sources, build a list of features through a set of transformations, and store the resulting
features along with the associated metadata and statistics. A feature set can be viewed as a database table with multiple
material implementations for batch and real-time access, along with the data pipeline definitions used to produce the
features.

The feature set object contains the following information:

• Metadata—General information which is helpful for search and organization. Examples are project, name,
owner, last update, description, labels, etc.

• Key attributes—Entity (the join key), timestamp key (optional), label column.

• Features—The list of features along with their schema, metadata, validation policies and statistics.

• Source—The online or offline data source definitions and ingestion policy (file, database, stream, http endpoint,
etc.).

• Transformation—The data transformation pipeline (e.g. aggregation, enrichment etc.).

• Target stores—The type (i.e. parquet/csv or key value), location and status for the feature set materialized data.

• Function—The type (storey, pandas, spark) and attributes of the data pipeline serverless functions.

In this section

• Create a Feature Set

• Add transformations

• Simulate and debug the data pipeline with a small dataset

• Ingest data into the Feature Store
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23.1.1 Create a Feature Set

Create a new FeatureSet with the base definitions:

• name—The feature set name is a unique name within a project.

• entities—Each feature set must be associated with one or more index column. When joining feature sets, the
entity is used as the key column.

• timestamp_key—(optional) Used for specifying the time field when joining by time.

• engine—The processing engine type:

– Spark

– pandas

– storey (some advanced functionalities are in the Beta state)

Example:

#Create a basic feature set example
stocks_set = FeatureSet("stocks", entities=[Entity("ticker")])

To learn more about Feature Sets go to FeatureSet.

Note

Feature sets can also be created in the UI. To create a feature set:

1. Select a project and press Feature store, then press Create Set.

2. After completing the form, press Save and Ingest to start the process, or Save to save the set for later ingestion.

23.1.2 Add transformations

Define the data processing steps using a transformations graph (DAG).

A feature set data pipeline takes raw data from online or offline sources and transforms it to meaningful features. The
MLRun feature store supports three processing engines (storey, pandas, spark) that can run in the client (e.g. Notebook)
for interactive development or in elastic serverless functions for production and scale.

The data pipeline is defined using MLRun graph (DAG) language. Graph steps can be pre-defined operators (such as
aggregate, filter, encode, map, join, impute, etc.) or custom python classes/functions. Read more about the graph in
Real-time serving pipelines (graphs).

The pandas and spark engines are good for simple batch transformations, while the storey stream processing engine
(the default engine) can handle complex workflows and real-time sources.

The results from the transformation pipeline are stored in one or more material targets. Data for offline access, such as
training, is usually stored in Parquet files. Data for online access such as serving is stored in a NoSQL DB. You can
use the default targets or add/replace with additional custom targets.

Graph example (storey engine):

import mlrun.feature_store as fstore
feature_set = fstore.FeatureSet("measurements", entities=[Entity(key)], timestamp_key=
→˓"timestamp")
# Define the computational graph including the custom functions

(continues on next page)
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feature_set.graph.to(DropColumns(drop_columns))\
.to(RenameColumns(mapping={'bad': 'bed'}))

feature_set.add_aggregation('hr', ['avg'], ["1h"])
feature_set.plot()
fstore.ingest(feature_set, data_df)

Graph example (pandas engine):

def myfunc1(df, context=None):
df = df.drop(columns=["exchange"])
return df

stocks_set = fstore.FeatureSet("stocks", entities=[Entity("ticker")], engine="pandas")
stocks_set.graph.to(name="s1", handler="myfunc1")
df = fstore.ingest(stocks_set, stocks_df)

The graph steps can use built-in transformation classes, simple python classes, or function handlers.

See more details in Feature set transformations.

23.1.3 Simulate and debug the data pipeline with a small dataset

During the development phase it’s pretty common to check the feature set definition and to simulate the creation of the
feature set before ingesting the entire dataset, since ingesting the entire feature set can take time. This allows you to get
a preview of the results (in the returned dataframe). The simulation method is called infer. It infers the source data
schema as well as processing the graph logic (assuming there is one) on a small subset of data. The infer operation also
learns the feature set schema and does statistical analysis on the result by default.

df = fstore.preview(quotes_set, quotes)

# print the featue statistics
print(quotes_set.get_stats_table())

23.1.4 Ingest data into the Feature Store

Define the source and material targets, and start the ingestion process (as local process, using an MLRun job, real-time
ingestion, or incremental ingestion).

Data can be ingested as a batch process either by running the ingest command on demand or as a scheduled job. Batch
ingestion can be done locally (i.e. running as a python process in the Jupyter pod) or as an MLRun job.

The data source can be a DataFrame or files (e.g. csv, parquet). Files can be either local files residing on a volume
(e.g. v3io), or remote (e.g. S3, Azure blob). MLRun also supports Google BigQuery as a data source. If you define a
transformation graph, then the ingestion process runs the graph transformations, infers metadata and stats, and writes
the results to a target data store.

When targets are not specified, data is stored in the configured default targets (i.e. NoSQL for real-time and Parquet
for offline).

Limitations

• Do not name columns starting with either _ or aggr_. They are reserved for internal use. See also general
limitations in Attribute name restrictions.
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• When using the pandas engine, do not use spaces ( ) or periods (.) in the column names. These cause errors in
the ingestion.

Inferring data

There are 2 types of infer options - metadata/schema inferring, and stats/preview inferring. The first type is responsible
for describing the dataset and generating its meta-data, such as deducing the data-types of the features and listing the
entities that are involved. Options belonging to this type are Entities, Features and Index. The InferOptions
class has the InferOptions.schema() function which returns a value containing all the options of this type. The
2nd type is related to calculating statistics and generating a preview of the actual data in the dataset. Options of this
type are Stats, Histogram and Preview.

The InferOptions class has the following values: class InferOptions: Null = 0 Entities = 1 Features = 2 Index = 4
Stats = 8 Histogram = 16 Preview = 32

The InferOptions class basically translates to a value that can be a combination of the above values. For example,
passing a value of 24 means Stats + Histogram.

When simultanesouly ingesting data and requesting infer options, part of the data might be ingested twice: once for
inferring metadata/stats and once for the actual ingest. This is normal behavior.

Ingest data locally

Use a Feature Set to create the basic feature-set definition and then an ingest method to run a simple ingestion “locally”
in the Jupyter Notebook pod.

# Simple feature set that reads a csv file as a dataframe and ingests it as is
stocks_set = FeatureSet("stocks", entities=[Entity("ticker")])
stocks = pd.read_csv("stocks.csv")
df = ingest(stocks_set, stocks)

# Specify a csv file as source, specify a custom CSV target
source = CSVSource("mycsv", path="stocks.csv")
targets = [CSVTarget("mycsv", path="./new_stocks.csv")]
ingest(measurements, source, targets)

To learn more about ingest go to ingest.

Ingest data using an MLRun job

Use the ingest method with the run_config parameter for running the ingestion process using a serverless MLRun
job. By doing that, the ingestion process runs on its own pod or service on the kubernetes cluster. This option is more
robust since it can leverage the cluster resources, as opposed to running within the Jupyter Notebook. It also enables
you to schedule the job or use bigger/faster resources.

# Running as remote job
stocks_set = FeatureSet("stocks", entities=[Entity("ticker")])
config = RunConfig(image='mlrun/mlrun')
df = ingest(stocks_set, stocks, run_config=config)
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Real-time ingestion

Real time use cases (e.g. real time fraud detection) require feature engineering on live data (e.g. z-score calculation)
while the data is coming from a streaming engine (e.g. kafka) or a live http endpoint. The feature store enables you to
start real-time ingestion service. When running the deploy_ingestion_service the feature store creates an elastic
real time serverless function (the nuclio function) that runs the pipeline and stores the data results in the “offline” and
“online” feature store by default. There are multiple data source options including http, kafka, kinesis, v3io stream,
etc. Due to the asynchronous nature of feature store’s execution engine, errors are not returned, but rather logged and
pushed to the defined error stream.

# Create a real time function that receives http requests
# the "ingest" function runs the feature engineering logic on live events
source = HTTPSource()
func = mlrun.code_to_function("ingest", kind="serving").apply(mount_v3io())
config = RunConfig(function=func)
fstore.deploy_ingestion_service(my_set, source, run_config=config)

To learn more about deploy_ingestion_service go to deploy_ingestion_service.

Incremental ingestion

You can schedule an ingestion job for a feature set on an ongoing basis. The first scheduled job runs on all the data in
the source and the subsequent jobs ingest only the deltas since the previous run (from the last timestamp of the previous
run until datetime.now). Example:

source = ParquetSource("myparquet", path=path, time_field="time", schedule=cron_trigger)
feature_set = fs.FeatureSet(name=name, entities=[fs.Entity("first_name")], timestamp_key=
→˓"time",)
fs.ingest(feature_set, source, run_config=fs.RunConfig())

The default value for the overwrite parameter in the ingest function for scheduled ingest is False, meaning that
the target from the previous ingest is not deleted. For the storey engine, the feature is currently implemented for
ParquetSource only. (CsvSource will be supported in a future release). For Spark engine, other sources are also
supported.

Data sources

For batch ingestion the feature store supports dataframes and files (i.e. csv & parquet). The files can reside on S3, NFS,
Azure blob storage, or the Iguazio platform. MLRun also supports Google BigQuery as a data source. When working
with S3/Azure, there are additional requirements. Use pip install mlrun[s3] or pip install mlrun[azure-blob-storage] to
install them.

• Azure: define the environment variable AZURE_STORAGE_CONNECTION_STRING.

• S3: define AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY and AWS_BUCKET.

For real time ingestion the source can be http, kafka or v3io stream, etc. When defining a source, it maps to nuclio
event triggers.

Note that you can also create a custom source to access various databases or data sources.
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Target stores

By default the feature sets are stored as both parquet file for training and as a key value table (in the Iguazio MLOps
platform) for online serving. The parquet file is ideal for fetching large set of data for training while the key value is
ideal for an online application since it supports low latency data retrieval based on key access.

Note

When working with the Iguazio MLOps platform the default feature set storage location is under the “Projects” con-
tainer: /fs/. . . folder. The default location can be modified in mlrun config or specified per ingest operation. The
parquet/csv files can be stored in NFS, S3, Azure blob storage and on Iguazio DB/FS.

23.2 Feature set transformations

A feature set contains an execution graph of operations that are performed when data is ingested, or when simulating
data flow for inferring its metadata. This graph utilizes MLRun’s Real-time serving pipelines (graphs).

The graph contains steps that represent data sources and targets, and may also contain steps whose purpose is trans-
formations and enrichment of the data passed through the feature set. These transformations can be provided in one of
three ways:

• Aggregations — MLRun supports adding aggregate features to a feature set through the add_aggregation()
function.

• Built-in transformations — MLRun is equipped with a set of transformations provided through the storey.
transformations package. These transformations can be added to the execution graph to perform common
operations and transformations.

• Custom transformations — You can extend the built-in functionality by adding new classes that perform any
custom operation and use them in the serving graph.

Once a feature-set is created, its internal execution graph can be observed by calling the feature-set’s plot() function,
which generates a graphviz plot based on the internal graph. This is very useful when running within a Jupyter
notebook, and produces a graph such as the following example:

This plot shows various transformations and aggregations being used as part of the feature-set processing, as well as
the targets where results are saved to (in this case two targets). Feature-sets can also be observed in the MLRun UI,
where the full graph can be seen and specific step properties can be observed:
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For a full end-to-end example of feature-store and usage of the functionality described in this page, refer to the feature
store example.

In this section

• Aggregations

• Built-in transformations

• Custom transformations

23.2.1 Aggregations

Aggregations, being a common tool in data preparation and ML feature engineering, are available directly through
the MLRun FeatureSet class. These transformations allow adding a new feature to the feature-set that is created by
performing some aggregate function over feature’s values within a time-based sliding window.

For example, if a feature-set contains stock trading data including the specific bid price for each bid at any given time,
you could introduce aggregate features that show the minimal and maximal bidding price over all the bids in the last
hour, per stock ticker (which is the entity in question). To do that, use the code:

import mlrun.feature_store as fstore
# create a new feature set
quotes_set = fstore.FeatureSet("stock-quotes", entities=[fstore.Entity("ticker")])
quotes_set.add_aggregation("bid", ["min", "max"], ["1h"], "10m")

Once this is executed, the feature-set has new features introduced, with their names produced from the aggre-
gate parameters, using this format: {column}_{operation}_{window}. Thus, the example above generates two
new features: bid_min_1h and bid_max_1h. If the function gets an optional name parameter, features are pro-
duced in {name}_{operation}_{window} format. If the name parameter is not specified, features are produced
in {column_name}_{operation}_{window} format. These features can then be fed into predictive models or be
used for additional processing and feature generation.

Notes

• Internally, the graph step that is created to perform these aggregations is named "Aggregates". If more than
one aggregation steps are needed, a unique name must be provided to each, using the state_name parameter.
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• The timestamp column must be part of the feature set definition (for aggregation).

Aggregations that are supported using this function are:

• count

• sum

• sqr (sum of squares)

• max

• min

• first

• last

• avg

• stdvar

• stddev

For a full documentation of this function, see the add_aggregation() documentation.

23.2.2 Built-in transformations

MLRun, and the associated storey package, have a built-in library of transformation functions that can be applied
as steps in the feature-set’s internal execution graph. In order to add steps to the graph, it should be referenced from
the FeatureSet object by using the graph property. Then, new steps can be added to the graph using the functions
in storey.transformations (follow the link to browse the documentation and the list of existing functions). The
transformations are also accessible directly from the storey module.

See the built-in steps.

Note

Internally, MLRun makes use of functions defined in the storey package for various purposes. When creating a
feature-set and configuring it with sources and targets, what MLRun does behind the scenes is to add steps to the
execution graph that wraps methods and classes, which perform the actions. When defining an async execution graph,
storey classes are used. For example, when defining a Parquet data-target in MLRun, a graph step is created that
wraps storey’s WriteToParquet() function.

To use a function:

1. Access the graph from the feature-set object, using the graph property.

2. Add steps to the graph using the various graph functions, such as to(). The function object passed to the step
should point at the transformation function being used.

The following is an example for adding a simple filter to the graph, that drops any bid which is lower than 50USD:

quotes_set.graph.to("storey.Filter", "filter", _fn="(event['bid'] > 50)")

In the example above, the parameter _fn denotes a callable expression that is passed to the storey.Filter class as
the parameter fn. The callable parameter can also be a Python function, in which case there’s no need for parentheses
around it. This call generates a step in the graph called filter that calls the expression provided with the event being
propagated through the graph as data is fed to the feature-set.
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23.2.3 Custom transformations

When a transformation is needed that is not provided by the built-in functions, new classes that implement transforma-
tions can be created and added to the execution graph. Such classes should extend the MapClass class, and the actual
transformation should be implemented within their do() function, which receives an event and returns the event after
performing transformations and manipulations on it. For example, consider the following code:

class MyMap(MapClass):
def __init__(self, multiplier=1, **kwargs):

super().__init__(**kwargs)
self._multiplier = multiplier

def do(self, event):
event["multi"] = event["bid"] * self._multiplier
return event

The MyMap class can then be used to construct graph steps, in the same way as shown above for built-in functions:

quotes_set.graph.add_step("MyMap", "multi", after="filter", multiplier=3)

This uses the add_step function of the graph to add a step called multi utilizing MyMap after the filter step that
was added previously. The class is initialized with a multiplier of 3.

23.3 Using the Spark execution engine

The feature store supports using Spark for ingesting, transforming, and writing results to data targets. When using
Spark, the internal execution graph is executed synchronously by utilizing a Spark session to perform read and write
operations, as well as potential transformations on the data. Executing synchronously means that the source data is
fully read into a data-frame that is processed, writing the output to the targets defined.

To use Spark as the transformation engine in ingestion, follow these steps:

When constructing the FeatureSet object, pass an engine parameter and set it to spark. For example:

feature_set = fstore.FeatureSet("stocks", entities=[fstore.Entity("ticker")], engine=
→˓"spark")

To use a remote execution engine, pass a RunConfig object as the run_config parameter for the ingest API. The
actual remote function to execute depends on the object passed:

• A default RunConfig, in which case the ingestion code either generates a new MLRun function runtime of type
remote-spark, or utilizes the function specified in feature_set.spec.function (in which case, it has to be
of runtime type remote-spark or spark).

• A RunConfig that has a function configured within it. As mentioned, the function runtime must be of type
remote-spark or spark.

Spark execution can be done locally, utilizing a local Spark session provided to the ingestion call. To use a local Spark
session, pass a Spark session context when calling the ingest() function, as the spark_context parameter. This
session is used for data operations and transformations.

See code examples in:

• Local Spark ingestion example

• Remote Spark ingestion example
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• Spark operator ingestion example

• Spark dataframe ingestion example

• Spark over S3 full flow example

• Spark ingestion from Snowflake example

• Spark ingestion from Azure example

23.3.1 Local Spark ingestion example

A local Spark session is a session running in the Jupyter service. The following code executes data ingestion using a
local Spark session.

When using a local Spark session, the ingest API would wait for its completion.

import mlrun
from mlrun.datastore.sources import CSVSource
import mlrun.feature_store as fstore
from pyspark.sql import SparkSession

mlrun.get_or_create_project(name="stocks")
feature_set = fstore.FeatureSet("stocks", entities=[fstore.Entity("ticker")], engine=
→˓"spark")

# add_aggregation can be used in conjunction with Spark
feature_set.add_aggregation("price", ["min", "max"], ["1h"], "10m")

source = CSVSource("mycsv", path="v3io:///projects/stocks.csv")

# Execution using a local Spark session
spark = SparkSession.builder.appName("Spark function").getOrCreate()
fstore.ingest(feature_set, source, spark_context=spark)

23.3.2 Remote Spark ingestion example

Remote Spark refers to a session running from another service, for example, the Spark standalone service or the Spark
operator service. When using remote execution the MLRun run execution details are returned, allowing tracking of its
status and results.

The following code should be executed only once to build the remote spark image before running the first ingest. It
may take a few minutes to prepare the image.

from mlrun.runtimes import RemoteSparkRuntime
RemoteSparkRuntime.deploy_default_image()

Remote ingestion:

# mlrun: start-code

from mlrun.feature_store.api import ingest
def ingest_handler(context):

ingest(mlrun_context=context) # The handler function must call ingest with the mlrun_
→˓context
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You can run your PySpark code for ingesting data into the feature store by adding:

def my_spark_func(df, context=None):
return df.filter("bid>55") # PySpark code

# mlrun: end-code

from mlrun.datastore.sources import CSVSource
from mlrun import code_to_function
import mlrun.feature_store as fstore

feature_set = fstore.FeatureSet("stock-quotes", entities=[fstore.Entity("ticker")],␣
→˓engine="spark")

source = CSVSource("mycsv", path="v3io:///projects/quotes.csv")

spark_service_name = "iguazio-spark-service" # As configured & shown in the Iguazio␣
→˓dashboard

feature_set.graph.to(name="s1", handler="my_spark_func")
my_func = code_to_function("func", kind="remote-spark")
config = fstore.RunConfig(local=False, function=my_func, handler="ingest_handler")
fstore.ingest(feature_set, source, run_config=config, spark_context=spark_service_name)

23.3.3 Spark operator ingestion example

When running with a Spark operator, the MLRun execution details are returned, allowing tracking of the job’s status
and results. Spark operator ingestion is always executed remotely.

The following code should be executed only once to build the spark job image before running the first ingest. It may
take a few minutes to prepare the image.

from mlrun.runtimes import Spark3Runtime
Spark3Runtime.deploy_default_image()

Spark operator ingestion:

# mlrun: start-code

from mlrun.feature_store.api import ingest

def ingest_handler(context):
ingest(mlrun_context=context) # The handler function must call ingest with the mlrun_

→˓context

# You can add your own PySpark code as a graph step:
def my_spark_func(df, context=None):

return df.filter("bid>55") # PySpark code

# mlrun: end-code
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from mlrun.datastore.sources import CSVSource
from mlrun import code_to_function
import mlrun.feature_store as fstore

feature_set = fstore.FeatureSet("stock-quotes", entities=[fstore.Entity("ticker")],␣
→˓engine="spark")

source = CSVSource("mycsv", path="v3io:///projects/quotes.csv")

feature_set.graph.to(name="s1", handler="my_spark_func")

my_func = code_to_function("func", kind="spark")

my_func.with_driver_requests(cpu="200m", mem="1G")
my_func.with_executor_requests(cpu="200m", mem="1G")
my_func.with_igz_spark()

# Enables using the default image (can be replace with specifying a specific image with .
→˓spec.image)
my_func.spec.use_default_image = True

# Not a must - default: 1
my_func.spec.replicas = 2

# If needed, sparkConf can be modified like this:
# my_func.spec.spark_conf['spark.specific.config.key'] = 'value'

config = fstore.RunConfig(local=False, function=my_func, handler="ingest_handler")
fstore.ingest(feature_set, source, run_config=config)

23.3.4 Spark dataframe ingestion example

The following code executes local data ingestion from a spark dataframe (Spark dataframe Ingestion cannot be executed
remotely.) The specified dataframe should be associated with spark_context.

from pyspark.sql import SparkSession
import mlrun.feature_store as fstore

columns = ["id", "count"]
data = [("a", "12"), ("b", "14"), ("c", "88")]

spark = SparkSession.builder.appName('example').getOrCreate()
df = spark.createDataFrame(data).toDF(*columns)

fset = fstore.FeatureSet("myset", entities=[fstore.Entity("id")], engine="spark")

fstore.ingest(fset, df, spark_context=spark)

spark.stop()

282 Chapter 23. Feature store: data ingestion



mlrun, Release UNKNOWN

23.3.5 Spark over S3 - full flow example

For Spark to work with S3, it requires several properties to be set. Spark over S3 can be executed both remotely and
locally, as long as access credentials to the S3 objects are available to it. The following example writes a feature set to
S3 in the parquet format in a remote k8s job:

One-time setup:

1. Deploy the default image for your job (this takes several minutes but should be executed only once per cluster
for any MLRun/Iguazio upgrade):

from mlrun.runtimes import RemoteSparkRuntime
RemoteSparkRuntime.deploy_default_image()

2. Store your S3 credentials in a k8s secret:

import mlrun
secrets = {'s3_access_key': AWS_ACCESS_KEY, 's3_secret_key': AWS_SECRET_KEY}
mlrun.get_run_db().create_project_secrets(

project = "uhuh-proj",
provider=mlrun.api.schemas.SecretProviderName.kubernetes,
secrets=secrets

)

Ingestion job code (to be executed in the remote pod):

# mlrun: start-code

from pyspark import SparkConf
from pyspark.sql import SparkSession

from mlrun.feature_store.api import ingest
def ingest_handler(context):

conf = (SparkConf()
.set("spark.hadoop.fs.s3a.path.style.access", True)
.set("spark.hadoop.fs.s3a.access.key", context.get_secret('s3_access_key'))
.set("spark.hadoop.fs.s3a.secret.key", context.get_secret('s3_secret_key'))
.set("spark.hadoop.fs.s3a.endpoint", context.get_param("s3_endpoint"))
.set("spark.hadoop.fs.s3a.region", context.get_param("s3_region"))
.set("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
.set("com.amazonaws.services.s3.enableV4", True)
.set("spark.driver.extraJavaOptions", "-Dcom.amazonaws.services.s3.

→˓enableV4=true"))
spark = (

SparkSession.builder.config(conf=conf).appName("S3 app").getOrCreate()
)

ingest(mlrun_context=context, spark_context=spark)

# mlrun: end-code

Ingestion invocation:
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from mlrun.datastore.sources import CSVSource
from mlrun.datastore.targets import ParquetTarget
from mlrun import code_to_function
import mlrun.feature_store as fstore

feature_set = fstore.FeatureSet("stock-quotes", entities=[fstore.Entity("ticker")],␣
→˓engine="spark")

source = CSVSource("mycsv", path="v3io:///projects/quotes.csv")

spark_service_name = "spark" # As configured & shown in the Iguazio dashboard

fn = code_to_function(kind='remote-spark', name='func')

run_config = fstore.RunConfig(local=False, function=fn, handler="ingest_handler")
run_config.with_secret('kubernetes', ['s3_access_key', 's3_secret_key'])
run_config.parameters = {

"s3_endpoint" : "s3.us-east-2.amazonaws.com",
"s3_region" : "us-east-2"

}

target = ParquetTarget(
path = "s3://my-s3-bucket/some/path",
partitioned = False,

)

fstore.ingest(feature_set, source, targets=[target], run_config=run_config, spark_
→˓context=spark_service_name)

23.3.6 Spark ingestion from Snowflake example

Spark ingestion from Snowflake can be executed both remotely and locally.

When running aggregations, they actually run on Spark and require Spark compute resources. The queries from the
database are “regular” snowflake queries and they use Snowflake compute resources.

Note

Entity is case sensitive.

The following code executes local data ingestion from Snowflake.

from pyspark.sql import SparkSession

import mlrun
import mlrun.feature_store as fstore
from mlrun.datastore.sources import SnowflakeSource

spark = SparkSession.builder.appName("snowy").getOrCreate()

mlrun.get_or_create_project("feature_store")
(continues on next page)
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feature_set = fstore.FeatureSet(
name="customer", entities=[fstore.Entity("C_CUSTKEY")], engine="spark"

)

source = SnowflakeSource(
"customer_sf",
query="select * from customer limit 100000",
url="<url>",
user="<user>",
password="<password>",
database="SNOWFLAKE_SAMPLE_DATA",
schema="TPCH_SF1",
warehouse="compute_wh",

)

fstore.ingest(feature_set, source, spark_context=spark)

23.3.7 Spark ingestion from Azure example

Spark ingestion from Azure can be executed both remotely and locally. The following code executes remote data
ingestion from Azure.

import mlrun

# Initialize the MLRun project object
project_name = "spark-azure-test"
project = mlrun.get_or_create_project(project_name, context="./")

from mlrun.runtimes import RemoteSparkRuntime
RemoteSparkRuntime.deploy_default_image()

from mlrun.datastore.sources import CSVSource
from mlrun.datastore.targets import ParquetTarget
from mlrun import code_to_function
import mlrun.feature_store as fstore

feature_set = fstore.FeatureSet("rides7", entities=[fstore.Entity("ride_id")], engine=
→˓"spark", timestamp_key="key")

source = CSVSource("rides", path="wasbs://warroom@mlrunwarroom.blob.core.windows.net/ny_
→˓taxi_train_subset_ride_id.csv")

spark_service_name = "spark-fs" # As configured & shown in the Iguazio dashboard

fn = code_to_function(kind='remote-spark', name='func')

run_config = fstore.RunConfig(local=False, function=fn, handler="ingest_handler")

target = ParquetTarget(partitioned = True, time_partitioning_granularity="month")

feature_set.set_targets(targets=[target],with_defaults=False)
(continues on next page)
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fstore.ingest(feature_set, source, run_config=run_config, spark_context=spark_service_
→˓name)
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CHAPTER

TWENTYFOUR

CREATE A BASIC TRAINING JOB

In this section, you create a simple job to train a model and log metrics, logs, and plots using MLRun’s auto-logging.

24.1 Define the training code

The code you run is as follows. Notice, there is only a single line from MLRun to add all the MLOps capabilities:

%%writefile trainer.py

from sklearn import ensemble
from sklearn.model_selection import train_test_split

import mlrun
from mlrun.frameworks.sklearn import apply_mlrun

def train(
dataset: mlrun.DataItem, # data inputs are of type DataItem (abstract the data␣

→˓source)
label_column: str = "label",
n_estimators: int = 100,
learning_rate: float = 0.1,
max_depth: int = 3,
model_name: str = "cancer_classifier",

):
# Get the input dataframe (Use DataItem.as_df() to access any data source)
df = dataset.as_df()

# Initialize the x & y data
X = df.drop(label_column, axis=1)
y = df[label_column]

# Train/Test split the dataset
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.2, random_state=42
)

# Pick an ideal ML model
model = ensemble.GradientBoostingClassifier(

n_estimators=n_estimators, learning_rate=learning_rate, max_depth=max_depth
(continues on next page)
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)

# -------------------- The only line you need to add for MLOps ----------------------
→˓---
# Wraps the model with MLOps (test set is provided for analysis & accuracy␣

→˓measurements)
apply_mlrun(model=model, model_name=model_name, x_test=X_test, y_test=y_test)
# -----------------------------------------------------------------------------------

→˓---

# Train the model
model.fit(X_train, y_train)

Writing trainer.py

24.2 Create the job

Next, use code_to_function to package up the Job to get ready to execute on the cluster:

import mlrun

training_job = mlrun.code_to_function(
name="basic-training",
filename="trainer.py",
kind="job",
image="mlrun/mlrun",
handler="train"

)

24.3 Run the job

Finally, run the job. The dataset is from S3, but usually it is the output from a previous step in a pipeline.

run = training_job.run(
inputs={"dataset": "https://igz-demo-datasets.s3.us-east-2.amazonaws.com/cancer-

→˓dataset.csv"},
params = {"n_estimators": 100, "learning_rate": 1e-1, "max_depth": 3}

)

> 2022-07-22 22:27:15,162 [info] starting run basic-training-train␣
→˓uid=bc1c6ad491c340e1a3b9b91bb520454f DB=http://mlrun-api:8080
> 2022-07-22 22:27:15,349 [info] Job is running in the background, pod: basic-training-
→˓train-kkntj
> 2022-07-22 22:27:20,927 [info] run executed, status=completed
final state: completed

<IPython.core.display.HTML object>
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<IPython.core.display.HTML object>

> 2022-07-22 22:27:21,640 [info] run executed, status=completed

24.4 View job results

Once the job is complete, you can view the output metrics and visualize the artifacts.

run.outputs

{'accuracy': 0.956140350877193,
'f1_score': 0.965034965034965,
'precision_score': 0.9583333333333334,
'recall_score': 0.971830985915493,
'feature-importance': 'v3io:///projects/default/artifacts/feature-importance.html',
'test_set': 'store://artifacts/default/basic-training-train_test_
→˓set:bc1c6ad491c340e1a3b9b91bb520454f',
'confusion-matrix': 'v3io:///projects/default/artifacts/confusion-matrix.html',
'roc-curves': 'v3io:///projects/default/artifacts/roc-curves.html',
'calibration-curve': 'v3io:///projects/default/artifacts/calibration-curve.html',
'model': 'store://artifacts/default/cancer_classifier:bc1c6ad491c340e1a3b9b91bb520454f'}

run.artifact("confusion-matrix").show()

<IPython.core.display.HTML object>

run.artifact("feature-importance").show()

<IPython.core.display.HTML object>

run.artifact("test_set").show()

mean radius mean texture mean perimeter mean area mean smoothness \
0 12.47 18.60 81.09 481.9 0.09965
1 18.94 21.31 123.60 1130.0 0.09009
2 15.46 19.48 101.70 748.9 0.10920
3 12.40 17.68 81.47 467.8 0.10540
4 11.54 14.44 74.65 402.9 0.09984
.. ... ... ... ... ...
109 14.64 16.85 94.21 666.0 0.08641
110 16.07 19.65 104.10 817.7 0.09168
111 11.52 14.93 73.87 406.3 0.10130
112 14.22 27.85 92.55 623.9 0.08223
113 20.73 31.12 135.70 1419.0 0.09469

mean compactness mean concavity mean concave points mean symmetry \
(continues on next page)
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0 0.10580 0.08005 0.03821 0.1925
1 0.10290 0.10800 0.07951 0.1582
2 0.12230 0.14660 0.08087 0.1931
3 0.13160 0.07741 0.02799 0.1811
4 0.11200 0.06737 0.02594 0.1818
.. ... ... ... ...
109 0.06698 0.05192 0.02791 0.1409
110 0.08424 0.09769 0.06638 0.1798
111 0.07808 0.04328 0.02929 0.1883
112 0.10390 0.11030 0.04408 0.1342
113 0.11430 0.13670 0.08646 0.1769

mean fractal dimension ... worst texture worst perimeter worst area \
0 0.06373 ... 24.64 96.05 677.9
1 0.05461 ... 26.58 165.90 1866.0
2 0.05796 ... 26.00 124.90 1156.0
3 0.07102 ... 22.91 89.61 515.8
4 0.06782 ... 19.68 78.78 457.8
.. ... ... ... ... ...
109 0.05355 ... 25.44 106.00 831.0
110 0.05391 ... 24.56 128.80 1223.0
111 0.06168 ... 21.19 80.88 491.8
112 0.06129 ... 40.54 102.50 764.0
113 0.05674 ... 47.16 214.00 3432.0

worst smoothness worst compactness worst concavity \
0 0.1426 0.2378 0.2671
1 0.1193 0.2336 0.2687
2 0.1546 0.2394 0.3791
3 0.1450 0.2629 0.2403
4 0.1345 0.2118 0.1797
.. ... ... ...
109 0.1142 0.2070 0.2437
110 0.1500 0.2045 0.2829
111 0.1389 0.1582 0.1804
112 0.1081 0.2426 0.3064
113 0.1401 0.2644 0.3442

worst concave points worst symmetry worst fractal dimension label
0 0.10150 0.3014 0.08750 1
1 0.17890 0.2551 0.06589 0
2 0.15140 0.2837 0.08019 0
3 0.07370 0.2556 0.09359 1
4 0.06918 0.2329 0.08134 1
.. ... ... ... ...
109 0.07828 0.2455 0.06596 1
110 0.15200 0.2650 0.06387 0
111 0.09608 0.2664 0.07809 1
112 0.08219 0.1890 0.07796 1
113 0.16590 0.2868 0.08218 0

[114 rows x 31 columns]
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TWENTYFIVE

WORKING WITH DATA AND MODEL ARTIFACTS

When running a training job, you need to pass in the data used for training, and save the resulting model. Both the data
and model can be considered artifacts in MLRun. In the context of an ML pipeline, the data is an input and the model
is an output.

Consider the following snippet from a pipeline in the Build and run automated ML pipelines and CI/CD section of the
docs:

# Ingest data
...

# Train a model using the auto_trainer hub function
train = mlrun.run_function(

"hub://auto_trainer",
inputs={"dataset": ingest.outputs["dataset"]},
params = {

"model_class": "sklearn.ensemble.RandomForestClassifier",
"train_test_split_size": 0.2,
"label_columns": "label",
"model_name": 'cancer',

},
handler='train',
outputs=["model"],

)

### Deploy model
...

This snippet trains a model using the data provided into inputs and passes the model to the rest of the pipeline using
the outputs.

25.1 Input data

The inputs parameter is a dictionary of key-value mappings. In this case, the input is the dataset (which is actually
an output from a previous step). Within the training job, you can access the dataset input as an MLRun Data items
(essentially a smart data pointer that provides convenience methods).

For example, this Python training function is expecting a parameter called dataset that is of type DataItem. Within
the function, you can get the training set as a Pandas dataframe via the following:
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import mlrun

def train(context: mlrun.MLClientCtx, dataset: mlrun.DataItem, ...):
df = dataset.as_df()

Notice how this maps to the parameter datasets that you passed into your inputs.

25.2 Output model

The outputs parameter is a list of artifacts that were logged during the job. In this case, it is your newly trained
model, however it could also be a dataset or plot. These artifacts are logged using the experiment tracking hooks via
the MLRun execution context.

One way to log models is via MLRun auto-logging with apply_mlrun. This saves the model, test sets, visualizations,
and more as outputs. Additionally, you can use manual hooks to save datasets and models. For example, this Python
training function uses both auto logging and manual logging:

import mlrun
from mlrun.frameworks.sklearn import apply_mlrun
from sklearn import ensemble
import cloudpickle

def train(context: mlrun.MLClientCtx, dataset: mlrun.DataItem, ...):
# Prep data using df
df = dataset.as_df()
X_train, X_test, y_train, y_test = ...

# Apply auto logging
model = ensemble.GradientBoostingClassifier(...)
apply_mlrun(model=model, model_name=model_name, x_test=X_test, y_test=y_test)

# Train
model.fit(X_train, y_train)

# Manual logging
context.log_dataset(key="X_test_dataset", df=X_test)
context.log_model(key="my_model", body=cloudpickle.dumps(model), model_file="model.

→˓pkl")

Once your artifact is logged, it can be accessed throughout the rest of the pipeline. For example, for the pipeline snippet
from the Build and run automated ML pipelines and CI/CD section of the docs, you can access your model like the
following:

# Train a model using the auto_trainer hub function
train = mlrun.run_function(

"hub://auto_trainer",
inputs={"dataset": ingest.outputs["dataset"]},
...
outputs=["model"],

)

(continues on next page)
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# Get trained model
model = train.outputs["model"]

Notice how this maps to the parameter model that you passed into your outputs.

25.2.1 Model artifacts

By storing multiple models, you can experiment with them,
and compare their performance, without having to worry about losing the previous results.

The simplest way to store a model named my_model is with the following code:

from pickle import dumps
model_data = dumps(model)
context.log_model(key='my_model', body=model_data, model_file='my_model.pkl')

You can also store any related metrics by providing a dictionary in the metrics parameter, such as
metrics={'accuracy': 0.9}. Furthermore, any additional data that you would like to store along with the
model can be specified in the extra_data parameter. For example extra_data={'confusion': confusion.
target_path}

A convenient utility method, eval_model_v2, which calculates mode metrics is available in mlrun.utils.

See example below for a simple model trained using scikit-learn (normally, you would send the data as input to the
function). The last two lines evaluate the model and log the model.

from sklearn import linear_model
from sklearn import datasets
from sklearn.model_selection import train_test_split
from pickle import dumps

from mlrun.execution import MLClientCtx
from mlrun.mlutils import eval_model_v2

def train_iris(context: MLClientCtx):

# Basic scikit-learn iris SVM model
X, y = datasets.load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.2, random_state=42)
model = linear_model.LogisticRegression(max_iter=10000)
model.fit(X_train, y_train)

# Evaluate model results and get the evaluation metrics
eval_metrics = eval_model_v2(context, X_test, y_test, model)

# Log model
context.log_model("model",

body=dumps(model),
artifact_path=context.artifact_subpath("models"),
extra_data=eval_metrics,
model_file="model.pkl",

(continues on next page)
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metrics=context.results,
labels={"class": "sklearn.linear_model.LogisticRegression"})

Save the code above to train_iris.py. The following code loads the function and runs it as a job. See the Quick
start tutorial to learn how to create the project and set the artifact path.

from mlrun import code_to_function

gen_func = code_to_function(name='train_iris',
filename='train_iris.py',
handler='train_iris',
kind='job',
image='mlrun/ml-models')

train_iris_func = project.set_function(gen_func).apply(auto_mount())

train_iris = train_iris_func.run(name='train_iris',
handler='train_iris',
artifact_path=artifact_path)

You can now use get_model to read the model and run it. This function gets the model file, metadata, and extra data.
The input can be either the path of the model, or the directory where the model resides. If you provide a directory, the
function searches for the model file (by default it searches for .pkl files)

The following example gets the model from models_path and test data in test_set with the expected label provided
as a column of the test data. The name of the column containing the expected label is provided in label_column. The
example then retrieves the models, runs the model with the test data and updates the model with the metrics and results
of the test data.

from pickle import load

from mlrun.execution import MLClientCtx
from mlrun.datastore import DataItem
from mlrun.artifacts import get_model, update_model
from mlrun.mlutils import eval_model_v2

def test_model(context: MLClientCtx,
models_path: DataItem,
test_set: DataItem,
label_column: str):

if models_path is None:
models_path = context.artifact_subpath("models")

xtest = test_set.as_df()
ytest = xtest.pop(label_column)

model_file, model_obj, _ = get_model(models_path)
model = load(open(model_file, 'rb'))

extra_data = eval_model_v2(context, xtest, ytest.values, model)
update_model(model_artifact=model_obj, extra_data=extra_data,

metrics=context.results, key_prefix='validation-')

To run the code, place the code above in test_model.py and use the following snippet. The model from the previous
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step is provided as the models_path:

from mlrun.platforms import auto_mount
gen_func = code_to_function(name='test_model',

filename='test_model.py',
handler='test_model',
kind='job',
image='mlrun/ml-models')

func = project.set_function(gen_func).apply(auto_mount())

run = func.run(name='test_model',
handler='test_model',
params={'label_column': 'label'},
inputs={'models_path': train_iris.outputs['model'],

'test_set': 'https://s3.wasabisys.com/iguazio/data/iris/iris_
→˓dataset.csv'}),

artifact_path=artifact_path)

25.2.2 Plot artifacts

Storing plots is useful to visualize the data and to show any information regarding the model performance. For example,
you can store scatter plots, histograms and cross-correlation of the data, and for the model store the ROC curve and
confusion matrix.

The following code creates a confusion matrix plot using sklearn.metrics.plot_confusion_matrix and stores the plot in
the artifact repository:

from mlrun.artifacts import PlotArtifact
from mlrun.mlutils import gcf_clear

gcf_clear(plt)
confusion_matrix = metrics.plot_confusion_matrix(model,

xtest,
ytest,
normalize='all',
values_format = '.2g',
cmap=plt.cm.Blues)

confusion_matrix = context.log_artifact(PlotArtifact('confusion-matrix', body=confusion_
→˓matrix.figure_),

local_path='plots/confusion_matrix.html')

You can use the update_dataset_meta function to associate the plot with the dataset by assigning the value of the
extra_data parameter:

from mlrun.artifacts import update_dataset_meta

extra_data = {'confusion_matrix': confusion_matrix}
update_dataset_meta(dataset, extra_data=extra_data)
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CHAPTER

TWENTYSIX

AUTOMATED EXPERIMENT TRACKING

You can write custom training functions or use built-in marketplace functions for training models using common open-
source frameworks and/or cloud services (such as AzureML, Sagemaker, etc.).

Inside the ML function you can use the apply_mlrun() method, which automates the tracking and MLOps function-
ality.

With apply_mlrun() the following outputs are generated automatically:

• Plots — loss convergence, ROC, confusion matrix, feature importance, etc.

• Metrics — accuracy, loss, etc.

• Dataset artifacts — like the dataset used for training and / or testing

• Custom code — like custom layers, metrics, and so on

• Model artifacts — enables versioning, monitoring and automated deployment

In addition it handles automation of various MLOps tasks like scaling runs over multiple containers (with Dask,
Horovod, and Spark), run profiling, hyperparameter tuning, ML Pipeline, and CI/CD integration, etc.

apply_mlrun() accepts the model object and various optional parameters. For example:

apply_mlrun(model=model, model_name="my_model",
x_test=x_test, y_test=y_test)

When specifying the x_test and y_test data it generates various plots and calculations to evaluate the model. Meta-
data and parameters are automatically recorded (from the MLRun context object) and don’t need to be specified.

apply_mlrun is framework specific and can be imported from MLRun’s frameworks package — a collection of
commonly used machine and deep learning frameworks fully supported by MLRun.

apply_mlrun can be used with its default settings, but it is highly flexible and rich with different options and config-
urations. Reading the docs of your favorite framework to get the most out of MLRun:

• SciKit-Learn

• TensorFlow (and Keras)

• PyTorch

• XGBoost

• LightGBM

• ONNX
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CHAPTER

TWENTYSEVEN

USING THE BUILT-IN TRAINING FUNCTION

The MLRun [function marketplace](MLRun Functions Marketplace includes, among other things, training functions.
The most commonly used function for training is auto_trainer, which includes three handlers:

• Train

• Evaluate

• Predict

27.1 Train

The main and default handler of any training function is called "train". In the Auto Trainer this handler performs an
ML training function using SciKit-Learn’s API, meaning the function follows the structure below:

1. Get the data: Get the dataset passed to a local path.

2. Split the data into datasets: Split the given data into a training set and a testing set.

3. Get the model: Initialize a model instance out of a given class or load a provided model The supported classes
are anything based on sklearn.Estimator, xgboost.XGBModel, lightgbm.LGBMModel, including custom
code as well.

4. Train: Call the model’s fit method to train it on the training set.

5. Test: Test the model on the testing set.

6. Log: Calculate the metrics and produce the artifacts to log the results and plots.

MLRun orchestrates all of the above steps. The training is done with the shortcut function apply_mlrun that enables
the automatic logging and additional features.

To start, run import mlrun and create a project:

import mlrun
# Set the base project name
project_name_base = 'training-test'

# Initialize the MLRun project object
project = mlrun.get_or_create_project(project_name_base, context="./", user_project=True)

Next, import the Auto Trainer from the Functions Marketplace using MLRun’s import_function function:

auto_trainer = project.set_function(mlrun.import_function("hub://auto_trainer"))

The following example trains a Random Forest model:
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dataset_url = "https://s3.wasabisys.com/iguazio/data/function-marketplace-data/xgb_
→˓trainer/classifier-data.csv"

train_run = auto_trainer.run(
handler="train",
inputs={"dataset": dataset_url},
params={

# Model parameters:
"model_class": "sklearn.ensemble.RandomForestClassifier",
"model_kwargs": {"max_depth": 8}, # Could be also passed as "MODEL_max_depth": 8
"model_name": "MyModel",
# Dataset parameters:
"drop_columns": ["feat_0", "feat_2"],
"train_test_split_size": 0.2,
"random_state": 42,
"label_columns": "labels",

}
)

27.1.1 Outputs

train_run.outputs returns all the outputs. The outputs are:

• Trained model: The trained model is logged as a ModelArtifact with all the following artifacts registered to
it.

• Test dataset: The test set used to test the model post training is logged as a DatasetArtifact.

• Plots: Informative plots regarding the model like confusion matrix and features importance are drawn and logged
as PlotArtifacts.

• Results: List of all the calculations of metrics tested on the testing set.

For instance, calling train_run.artifact('confusion-matrix').show() shows the following confusion matrix:
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27.1.2 Parameters

To view the parameters of train, expand the section below:

train handler parameters:

Model Parameters

Parameters to initialize a new model object or load a logged one for retraining.

• model_class: str — The class of the model to initialize. Can be a module path like "sklearn.
linear_model.LogisticRegression" or a custom model passed through the custom objects parameters be-
low. Only one of model_class and model_path can be given.

• model_path: str — A ModelArtifact URI to load and retrain. Only one of model_class and model_path
can be given.

• model_kwargs: dict — Additional parameters to pass onto the initialization of the model object (the model’s
class __init__ method).

Data parameters

Parameters to get a dataset and prepare it for training, splitting into training and testing if required.

• dataset: Union[str, list, dict] — The dataset to train the model on.

– Can be passed as part of inputs to be parsed as mlrun.DataItem, meaning it supports either a URI or a
FeatureVector.

27.1. Train 301



mlrun, Release UNKNOWN

– Can be passed as part of params, meaning it can be a list or a dict.

• drop_columns: Union[str, int, List[str], List[int]] — Columns to drop from the dataset. Can be
passed as strings representing the column names or integers representing the column numbers.

• test_set: Union[str, list, dict] — The test set to test the model with post training. Notice only one of
test_set or train_test_split_size is expected.

– Can be passed as part of inputs to be parsed as mlrun.DataItem, meaning it supports either a URI or a
FeatureVector.

– Can be passed as part of params, meaning it can be a list or a dict.

• train_test_split_size: float = 0.2 — The proportion of the dataset to include in the test split. The size
of the Training set is set to the complement of this value. Must be between 0.0 and 1.0. Defaults to 0.2

• label_columns: Union[str, int, List[str], List[int]]— The target label(s) of the column(s) in the
dataset. Can be passed as strings representing the column names or integers representing the column numbers.

• random_state: int - Random state (seed) for train_test_split.

Train parameters

Parameters to pass to the fit method of the model object.

• train_kwargs: dict — Additional parameters to pass onto the fit method.

Logging parameters

Parameters to control the automatic logging feature of MLRun. You can adjust the logging outputs as relevant and if
not passed, a default list of artifacts and metrics is produced and calculated.

• model_name: str = "model” — The model’s name to use for storing the model artifact, defaults to ‘model’.

• tag: str — The model’s tag to log with.

• sample_set: Union[str, list, dict]— A sample set of inputs for the model for logging its stats alongside
the model in favor of model monitoring. If not given, the training set is used instead.

– Can be passed as part of inputs to be parsed as mlrun.DataItem, meaning it supports either a URI or a
FeatureVector.

– Can be passed as part of params, meaning it can be a list or a dict.

• _artifacts: Dict[str, Union[list, dict]] — Additional artifacts to produce post training. See the
ArtifactsLibrary of the desired framework to see the available list of artifacts.

• _metrics: Union[List[str], Dict[str, Union[list, dict]]] — Additional metrics to calculate post
training. See how to pass metrics and custom metrics in the MetricsLibrary of the desired framework.

• apply_mlrun_kwargs: dict — Framework specific apply_mlrun key word arguments. Refer to the frame-
work of choice to know more (SciKit-Learn, XGBoost or LightGBM)

Custom objects parameters

Parameters to include custom objects like custom model class, metric code and artifact plan. Keep in mind that the
model artifact created is logged with the custom objects, so if model_path is used, the custom objects used to train it
are not required for loading it, it happens automatically.

• custom_objects_map: Union[str, Dict[str, Union[str, List[str]]]] — A map of all the custom
objects required for loading, training and testing the model. Can be passed as a dictionary or a json file path.
Each key is a path to a python file and its value is the custom object name to import from it. If multiple objects
needed to be imported from the same py file a list can be given. For example:
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{
"/.../custom_model.py": "MyModel",
"/.../custom_objects.py": ["object1", "object2"]

}

All the paths are accessed from the given ‘custom_objects_directory’, meaning each py file is read from ‘cus-
tom_objects_directory/’. If the model path given is of a store object, the custom objects map is read from the
logged custom object map artifact of the model.

Note

The custom objects are imported in the order they came in this dictionary (or json). If a custom object is dependant
on another, make sure to put it below the one it relies on.

• custom_objects_directory: Path to the directory with all the python files required for the custom objects.
Can be passed as a zip file as well (and are extracted during the start of the run).

Note

The parameters for additional arguments model_kwargs, train_kwargs and apply_mlrun_kwargs can be
also passed in the global kwargs with the matching prefixes: "MODEL_", "TRAIN_", "MLRUN_".

27.2 Evaluate

The "evaluate" handler is used to test the model on a given testing set and log its results. This is a common phase
in every model lifecycle and should be done periodically on updated testing sets to confirm that your model is still
relevant. The function uses SciKit-Learn’s API for evaluation, meaning the function follows the structure below:

1. Get the data: Get the testing dataset passed to a local path.

2. Get the model: Get the model object out of the ModelArtifact URI.

3. Predict: Call the model’s predict (and predict_proba if needed) method to test it on the testing set.

4. Log: Test the model on the testing set and log the results and artifacts.

MLRun orchestrates all of the above steps. The evaluation is done with the shortcut function apply_mlrun that enables
the automatic logging and further features.

To evaluate the test-set, use the following command:

evaluate_run = auto_trainer.run(
handler="evaluate",
inputs={"dataset": train_run.outputs['test_set']},
params={

"model": train_run.outputs['model'],
"label_columns": "labels",

},
)
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27.2.1 Outputs

evaluate_run.outputs returns all the outputs. The outputs are:

• Evaluated model: The evaluated model’s ModelArtifact is updated with all the following artifacts registered
to it.

• Test dataset: The test set used to test the model post-training is logged as a DatasetArtifact.

• Plots: Informative plots regarding the model like confusion matrix and features importance are drawn and logged
as PlotArtifacts.

• Results: List of all the calculations of metrics tested on the testing set.

27.2.2 Parameters

To view the parameters of evaluate, expand the section below:

evaluate handler parameters:

Model Parameters

Parameters to load a logged model.

• model_path: str — A ModelArtifact URI to load.

Data parameters

Parameters to get a dataset and prepare it for training, splitting into training and testing if required.

• dataset: Union[str, list, dict] — The dataset to train the model on.

– Can be passed as part of inputs to be parsed as mlrun.DataItem, meaning it supports either a URI or a
FeatureVector.

– Can be passed as part of params, meaning it can be a list or a dict.

• drop_columns: Union[str, int, List[str], List[int]] — columns to drop from the dataset. Can be
passed as strings representing the column names or integers representing the column numbers.

• label_columns: Union[str, int, List[str], List[int]]— The target label(s) of the column(s) in the
dataset. Can be passed as strings representing the column names or integers representing the column numbers.

Predict parameters

Parameters to pass to the predict method of the model object.

• predict_kwargs: dict — Additional parameters to pass onto the predict method.

Logging parameters

Parameters to control the automatic logging feature of MLRun. You can adjust the logging outputs as relervant, and if
not passed, a default list of artifacts and metrics is produced and calculated.

• _artifacts: Dict[str, Union[list, dict]] — Additional artifacts to produce post training. See the
ArtifactsLibrary of the desired framework to see the available list of artifacts.

• _metrics: Union[List[str], Dict[str, Union[list, dict]]] — Additional metrics to calculate post
training. See how to pass metrics and custom metrics in the MetricsLibrary of the desired framework.

• apply_mlrun_kwargs: dict — Framework specific apply_mlrun key word arguments. Refer to the frame-
work of choice to know more (SciKit-Learn, XGBoost or LightGBM).
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Custom objects parameters

Parameters to include custom objects for the evaluation like custom metric code and artifact plans. Keep in mind that
the custom objects used to train the model are not required for loading it, it happens automatically.

• custom_objects_map: Union[str, Dict[str, Union[str, List[str]]]] — A map of all the custom
objects required for loading, training and testing the model. Can be passed as a dictionary or a json file path.
Each key is a path to a python file and its value is the custom object name to import from it. If multiple objects
needed to be imported from the same py file a list can be given. For example:

{
"/.../custom_metric.py": "MyMetric",
"/.../custom_plans.py": ["plan1", "plan2"]

}

All the paths are accessed from the given ‘custom_objects_directory’, meaning each py file is read from the
‘custom_objects_directory/’. If the model path given is of a store object, the custom objects map is read from
the logged custom object map artifact of the model.

Note

The custom objects are imported in the order they came in this dictionary (or json). If a custom object is depended
on another, make sure to put it below the one it relies on.

• custom_objects_directory — Path to the directory with all the python files required for the custom objects.
Can be passed as a zip file as well (iti is extracted during the start of the run).

Note

The parameters for additional arguments predict_kwargs and apply_mlrun_kwargs can be also passed in
the global kwargs with the matching prefixes: "PREDICT_", "MLRUN_".

27.3 Predict

The "predict" handler is used to run a manual prediction using the model provided (and is sometimes referred to as
“batch_predict”). Manually calling predict is usually used to test the model on specific samples or for manually serving
the model, performing prediction when enough requests were collected. The function is simple and straightforward:

1. Get the model: Get the model object out of the ModelArtifact URI.

2. Predict: Call the model’s predict (and predict_proba if needed) method and return its raw prediction as a
logged dataset.

Getting the model is done with the shortcut function apply_mlrun.

The following code runs a prediction on a single sample using the model from the training run:

predict_run = auto_trainer.run(
handler="predict",
inputs={"dataset": train_run.outputs['test_set']},
params={

"model": train_run.outputs['model'],
"drop_columns": ["labels"],

(continues on next page)
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},
)

27.3.1 Outputs

predict_run.outputs has a single output called prediction that includes the input columns and a new column
called predicted_labels that has the prediction.

27.3.2 Parameters

To view the parameters of predict, expand the section below:

predict handler parameters:

Model Parameters

Parameters to load a logged model.

• model_path: str — A ModelArtifact URI to load.

Data parameters

Parameters to get a dataset and prepare it for training, splitting into training and testing if required.

• dataset: Union[str, list, dict] — The dataset to train the model on.

– Can be passed as part of inputs to be parsed as mlrun.DataItem, meaning it supports either a URI or a
FeatureVector.

– Can be passed as part of params, meaning it can be a list or a dict.

• drop_columns: Union[str, int, List[str], List[int]] — columns to drop from the dataset. Can be
passed as strings representing the column names or integers representing the column numbers.

• label_columns: Union[str, int, List[str], List[int]] — The target label(s) to give the logged pre-
diction. Can be passed as strings representing the column names or integers representing the column numbers.

Predict parameters

Parameters to pass to the predict method of the model object.

• predict_kwargs: dict — Additional parameters to pass onto the predict method.

Note

The parameters for additional arguments predict_kwargs and apply_mlrun_kwargs can be also passed in
the global kwargs with the matching prefixes: "PREDICT_", "MLRUN_".
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TWENTYEIGHT

TRAINING WITH THE FEATURE STORE

In this section

28.1 Creating and using feature vectors

You can define a group of features from different feature sets as a FeatureVector.
Feature vectors are used as an input for models, allowing you to define the feature vector once, and in turn create and
track the datasets created from it or the online manifestation of the vector for real-time prediction needs.

The feature vector handles all the merging logic for you using an asof merge type merge that accounts for both the
time and the entity. It ensures that all the latest relevant data is fetched, without concerns about “seeing the future” or
other types of common time related errors.

In this section

• Creating a feature vector

• Using a feature vector

28.1.1 Creating a feature vector

The feature vector object holds the following information:

• Name — the feature vector’s name as will be later addressed in the store reference store://feature_vectors/
<project>/<feature-vector-name> and the UI (after saving the vector).

• Description — a string description of the feature vector.

• Features — a list of features that comprise the feature vector.
The feature list is defined by specifying the <feature-set>.<feature-name> for specific features or
<feature-set>.* for all the feature set’s features.

• Label feature — the feature that is the label for this specific feature vector, as a <feature-set>.
<feature-name> string specification.

Example of creating a feature vector:

import mlrun.feature_store as fstore

# Feature vector definitions
feature_vector_name = 'example-fv'
feature_vector_description = 'Example feature vector'
features = ['data_source_1.*',

(continues on next page)
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'data_source_2.feature_1',
'data_source_2.feature_2',
'data_source_3.*']

label_feature = 'label_source_1.label_feature'

# Feature vector creation
fv = fstore.FeatureVector(name=feature_vector_name,

features=features,
label_feature=label_feature,
description=feature_vector_description)

# Save the feature vector in the MLRun DB
# so it will could be referenced by the `store://`
# and show in the UI
fv.save()

After saving the feature vector, it appears in the UI:

You can also view some metadata about the feature vector, including all the features, their types, a preview and statistics:
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28.1.2 Using a feature vector

After a feature vector is saved, it can be used to create both offline (static) datasets and online (real-time) instances to
supply as input to a machine learning model.

Creating an offline feature vector

Use the feature store’s get_offline_features() function to produce a dataset from the feature vector. It creates
the dataset (asynchronously if possible), saves it to the requested target, and returns a OfflineVectorResponse.
Due to the async nature of this action, the response object contains an fv_response.status indicator that, once
completed, could be directly turned into a dataframe, parquet or a csv.

get_offline_features expects to receive:

• feature_vector — a feature vector store reference or object.

• entity_rows — an optional dataframe that the features will be joined to.
Defaults to the first feature set defined in the features vector’s features list, and acts as the base for the vector’s
joins.

• entity_timestamp_column — an optional specific timestamp column (from the defined features) to act as the
base timestamp column.
Defaults to the base feature set’s timestamp entity.

• target — a Feature Store target to write the results to.
Defaults to return as a return value to the caller.

• run_config — an optional function or a RunConfig to run the feature vector creation process in a remote func-
tion.

• drop_columns — a list of columns to drop from the resulting feature vector. Optional.

• start_time — datetime, low limit of time needed to be filtered. Optional.

• end_time — datetime, high limit of time needed to be filtered. Optional.

You can add a time-based filter condition when running get_offline_feature with a given vector. You can also
filter with the query argument on all the other features as relevant.

Here’s an example of a new dataset from a parquet target:

# Import the Parquet Target, so you can build your dataset from a parquet file
from mlrun.datastore.targets import ParquetTarget

# Get offline feature vector based on vector and parquet target
offline_fv = fstore.get_offline_features(feature_vector_name, target=ParquetTarget())

# Return dataset
dataset = offline_fv.to_dataframe()

Once an offline feature vector is created with a static target (such as ParquetTarget()) the reference to this dataset is
saved as part of the feature vector’s metadata and can now be referenced directly through the store as a function input
using store://feature-vectors/{project}/{feature_vector_name}.

For example:

fn = mlrun.import_function('hub://sklearn-classifier').apply(auto_mount())

# Define the training task, including the feature vector and label
(continues on next page)
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task = mlrun.new_task('training',
inputs={'dataset': f'store://feature-vectors/{project}/{feature_

→˓vector_name}'},
params={'label_column': 'label'}
)

# Run the function
run = fn.run(task)

You can see a full example of using the offline feature vector to create an ML model in part 2 of the end-to-end demo.

Creating an online feature vector

The online feature vector provides real-time feature vectors to the model using the latest data available.

First create an Online Feature Service using get_online_feature_service(). Then feed the Entity of the
feature vector to the service and receive the latest feature vector.

To create the OnlineVectorService you only need to pass it the feature vector’s store reference.

import mlrun.feature_store as fstore

# Create the Feature Vector Online Service
feature_vector = 'store://feature-vectors/{project}/{feature_vector_name}'
svc = fstore.get_online_feature_service(feature_vector)

The online feature service supports value imputing (substitute NaN/Inf values with statistical or constant value). You
can set the impute_policy parameter with the imputing policy, and specify which constant or statistical value will be
used instead of NaN/Inf value. This can be defined per column or for all the columns ("*"). The replaced value can
be a fixed number for constants or $mean, $max, $min, $std, $count for statistical values. "*" is used to specify the
default for all features, for example:

svc = fstore.get_online_feature_service(feature_vector, impute_policy={"*": "$mean", "age
→˓": 33})

To use the online feature service you need to supply a list of entities you want to get the feature vectors for. The service
returns the feature vectors as a dictionary of {<feature-name>: <feature-value>} or simply a list of values as
numpy arrays.

For example:

# Define the wanted entities
entities = [{<feature-vector-entity-column-name>: <entity>}]

# Get the feature vectors from the service
svc.get(entities)

The entities can be a list of dictionaries as shown in the example, or a list of lists where the values in the internal list
correspond to the entity values (e.g. entities = [["Joe"], ["Mike"]]). The .get() method returns a dict by
default. If you want to return an ordered list of values, set the as_list parameter to True. The list input is required
by many ML frameworks and this eliminates additional glue logic.

See a full example of using the online feature service inside a serving function in part 3 of the end-to-end demo.
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28.2 Retrieve offline data

In this section

• Creating an offline dataset

• Training

28.2.1 Creating an offline dataset

An offline dataset is a specific instance of the feature vector definition. To create this instance, use the feature store’s
get_offline_features(<feature_vector>, <target>) function on the feature vector using the store://
<project_name>/<feature_vector> reference and an offline target (as in Parquet, CSV, etc.).

You can add a time-based filter condition when running get_offline_feature with a given vector. You can also
filter with the query argument on all the other features as you like. See get_offline_features().

import mlrun.feature_store as fstore

feature_vector = '<feature_vector_name>'
offline_fv = fstore.get_offline_features(feature_vector=feature_vector,␣
→˓target=ParquetTarget())

Behind the scenes, get_offline_features() runs a local or Kubernetes job (can be specific by the run_config
parameter) to retrieve all the relevant data from the feature sets, merge them and return it to the specified target which
can be a local parquet, AZ Blob store or any other type of available storage.

Once instantiated with a target, the feature vector holds a reference to the instantiated dataset and references it as its
current offline source.

You can also use MLRun’s log_dataset() to log the specific dataset to the project as a specific dataset resource.

28.2.2 Training

Training your model using the feature store is a fairly simple task. (The offline dataset can also be used for your EDA.)

To retrieve a feature vector’s offline dataset, use MLRun’s data item mechanism, referencing the feature vector and
specifying to receive it as a DataFrame.

df = mlrun.get_dataitem(f'store://feature-vectors/{project}/patient-deterioration').as_
→˓df()

When trying to retrieve the dataset in your training function, you can put the feature vector reference as an input to the
function and use the as_df() function to retrieve it automatically.
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# A sample MLRun training function
def my_training_function(context, # MLRun context

dataset, # our feature vector reference
**kwargs):

# retrieve the dataset
df = dataset.as_df()

# The rest of your training code...

And now you can create the MLRun function and run it locally or over the kubernetes cluster:

# Creating the training MLRun function with the code
fn = mlrun.code_to_function('training',

kind='job',
handler='my_training_function')

# Creating the task to run the function with its dataset
task = mlrun.new_task('training',

inputs={'dataset': f'store://feature-vectors/{project}/{feature_
→˓vector_name}'}) # The feature vector is given as an input to the function

# Running the function over the kubernetes cluster
fn.run(task) # Set local=True to run locally
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TWENTYNINE

HYPERPARAMETER TUNING OPTIMIZATION

MLRun supports iterative tasks for automatic and distributed execution of many tasks with variable parameters (hyper-
params). Iterative tasks can be distributed across multiple containers. They can be used for:

• Parallel loading and preparation of many data objects

• Model training with different parameter sets and/or algorithms

• Parallel testing with many test vector options

• AutoML

MLRun iterations can be viewed as child runs under the main task/run. Each child run gets a set of parameters that are
computed/selected from the input hyperparameters based on the chosen strategy (Grid, List, Random or Custom).

The different iterations can run in parallel over multiple containers (using Dask or Nuclio runtimes, which manage the
workers). Read more in Parallel execution over containers.

The hyperparameters and options are specified in the task or the run() command through the hyperparams (for
hyperparam values) and hyper_param_options (for HyperParamOptions) properties. See the examples below.
Hyperparameters can also be loaded directly from a CSV or Json file (by setting the param_file hyper option).

The hyperparams are specified as a struct of key: list values for example: {"p1": [1,2,3], "p2": [10,
20]}. The values can be of any type (int, string, float, . . . ). The lists are used to compute the parameter combinations
using one of the following strategies:

• Grid search (grid) — running all the parameter combinations.

• Random (random) — running a sampled set from all the parameter combinations.

• List (list) — running the first parameter from each list followed by the seco2nd from each list and so on. All
the lists must be of equal size.

• Custom (custom) — determine the parameter combination per run programmatically.

You can specify a selection criteria to select the best run among the different child runs by setting the selector option.
This marks the selected result as the parent (iteration 0) result, and marks the best result in the user interface.

You can also specify the stop_condition to stop the execution of child runs when some criteria, based on the returned
results, is met (for example stop_condition="accuracy>=0.9").

In this section

• Basic code

• Review the results

• Examples

• Parallel execution over containers
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29.1 Basic code

Here’s a basic example of running multiple jobs in parallel for hyperparameters tuning, selecting the best run with
respect to the max accuracy.

Run the hyperparameters tuning job by using the keywords arguments:

• hyperparams for the hyperparameters options and values of choice.

• selector for specifying how to select the best model.

hp_tuning_run = project.run_function(
"trainer",
inputs={"dataset": gen_data_run.outputs["dataset"]},
hyperparams={

"n_estimators": [100, 500, 1000],
"max_depth": [5, 15, 30]

},
selector="max.accuracy",
local=True

)

The returned run object in this case represents the parent (and the best result). You can also access the individual
child runs (called iterations) in the MLRun UI.

29.2 Review the results

When running a hyperparam job, the job results tab shows the list and marks the best run:

You can also view results by printing the artifact iteration_results:

hp_tuning_run.artifact("iteration_results").as_df()
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MLRun also generates a parallel coordinates plot for the run, you can view it in the MLRun UI.

29.3 Examples

Base dummy function:

import mlrun

> 2021-10-23 12:47:39,982 [warning] Failed resolving version info. Ignoring and using␣
→˓defaults
> 2021-10-23 12:47:43,488 [warning] Unable to parse server or client version. Assuming␣
→˓compatible: {'server_version': '0.8.0-rc7', 'client_version': 'unstable'}

def hyper_func(context, p1, p2):
print(f"p1={p1}, p2={p2}, result={p1 * p2}")
context.log_result("multiplier", p1 * p2)

29.3.1 Grid search (default)

grid_params = {"p1": [2,4,1], "p2": [10,20]}
task = mlrun.new_task("grid-demo").with_hyper_params(grid_params, selector="max.
→˓multiplier")
run = mlrun.new_function().run(task, handler=hyper_func)

> 2021-10-23 12:47:43,505 [info] starting run grid-demo␣
→˓uid=29c9083db6774e5096a97c9b6b6c8e93 DB=http://mlrun-api:8080
p1=2, p2=10, result=20
p1=4, p2=10, result=40
p1=1, p2=10, result=10
p1=2, p2=20, result=40
p1=4, p2=20, result=80

(continues on next page)
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p1=1, p2=20, result=20
> 2021-10-23 12:47:44,851 [info] best iteration=5, used criteria max.multiplier

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-10-23 12:47:45,071 [info] run executed, status=completed

UI Screenshot:

29.3.2 Random Search

MLRun chooses random parameter combinations. Limit the number of combinations using the max_iterations
attribute.

grid_params = {"p1": [2,4,1,3], "p2": [10,20,30]}
task = mlrun.new_task("random-demo")
task.with_hyper_params(grid_params, selector="max.multiplier", strategy="random", max_
→˓iterations=4)
run = mlrun.new_function().run(task, handler=hyper_func)

> 2021-10-23 12:47:45,077 [info] starting run random-demo␣
→˓uid=cac368c7fc33455f97ca806e5c7abf2f DB=http://mlrun-api:8080
p1=2, p2=20, result=40
p1=4, p2=10, result=40
p1=3, p2=10, result=30
p1=3, p2=20, result=60
> 2021-10-23 12:47:45,966 [info] best iteration=4, used criteria max.multiplier

316 Chapter 29. Hyperparameter tuning optimization



mlrun, Release UNKNOWN

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-10-23 12:47:46,177 [info] run executed, status=completed

29.3.3 List search

This example also shows how to use the stop_condition option.

list_params = {"p1": [2,3,7,4,5], "p2": [15,10,10,20,30]}
task = mlrun.new_task("list-demo").with_hyper_params(

list_params, selector="max.multiplier", strategy="list", stop_condition="multiplier>
→˓=70")
run = mlrun.new_function().run(task, handler=hyper_func)

> 2021-10-23 12:47:46,184 [info] starting run list-demo␣
→˓uid=136edfb9c9404a61933c73bbbd35b18b DB=http://mlrun-api:8080
p1=2, p2=15, result=30
p1=3, p2=10, result=30
p1=7, p2=10, result=70
> 2021-10-23 12:47:47,193 [info] reached early stop condition (multiplier>=70), stopping␣
→˓iterations!
> 2021-10-23 12:47:47,195 [info] best iteration=3, used criteria max.multiplier

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-10-23 12:47:47,385 [info] run executed, status=completed

29.3.4 Custom iterator

You can define a child iteration context under the parent/main run. The child run is logged independently.

def handler(context: mlrun.MLClientCtx, param_list):
best_multiplier = total = 0
for param in param_list:

with context.get_child_context(**param) as child:
hyper_func(child, **child.parameters)
multiplier = child.results['multiplier']
total += multiplier
if multiplier > best_multiplier:

child.mark_as_best()
(continues on next page)
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best_multiplier = multiplier

# log result at the parent
context.log_result('avg_multiplier', total / len(param_list))

param_list = [{"p1":2, "p2":10}, {"p1":3, "p2":30}, {"p1":4, "p2":7}]
run = mlrun.new_function().run(handler=handler, params={"param_list": param_list})

> 2021-10-23 12:47:47,403 [info] starting run mlrun-a79c5c-handler␣
→˓uid=c3eb08ebae02464ca4025c77b12e3c39 DB=http://mlrun-api:8080
p1=2, p2=10, result=20
p1=3, p2=30, result=90
p1=4, p2=7, result=28

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-10-23 12:47:48,734 [info] run executed, status=completed

29.4 Parallel execution over containers

When working with compute intensive or long running tasks you’ll want to run your iterations over a cluster of con-
tainers. At the same time, you don’t want to bring up too many containers, and you want to limit the number of parallel
tasks.

MLRun supports distribution of the child runs over Dask or Nuclio clusters. This is handled automatically by MLRun.
You only need to deploy the Dask or Nuclio function used by the workers, and set the level of parallelism in the task.
The execution can be controlled from the client/notebook, or can have a job (immediate or scheduled) that controls the
execution.

29.4.1 Code example (single task)

# mark the start of a code section that will be sent to the job
# mlrun: start-code

import socket
import pandas as pd
def hyper_func2(context, data, p1, p2, p3):

print(data.as_df().head())
context.logger.info(f"p2={p2}, p3={p3}, r1={p2 * p3} at {socket.gethostname()}")
context.log_result("r1", p2 * p3)
raw_data = {

"first_name": ["Jason", "Molly", "Tina", "Jake", "Amy"],
"age": [42, 52, 36, 24, 73],

(continues on next page)
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"testScore": [25, 94, 57, 62, 70],
}
df = pd.DataFrame(raw_data, columns=["first_name", "age", "testScore"])
context.log_dataset("mydf", df=df, stats=True)

# mlrun: end-code

29.4.2 Running the workers using Dask

This example creates a new function and executes the parent/controller as an MLRun job and the different child runs
over a Dask cluster (MLRun Dask function).

Define a Dask cluster (using MLRun serverless Dask)

dask_cluster = mlrun.new_function("dask-cluster", kind='dask', image='mlrun/ml-models')
dask_cluster.apply(mlrun.mount_v3io()) # add volume mounts
dask_cluster.spec.service_type = "NodePort" # open interface to the dask UI dashboard
dask_cluster.spec.replicas = 2 # define two containers
uri = dask_cluster.save()
uri

'db://default/dask-cluster'

# initialize the dask cluster and get its dashboard url
dask_cluster.client

> 2021-10-23 12:48:49,020 [info] trying dask client at: tcp://mlrun-dask-cluster-
→˓eea516ff-5.default-tenant:8786
> 2021-10-23 12:48:49,049 [info] using remote dask scheduler (mlrun-dask-cluster-
→˓eea516ff-5) at: tcp://mlrun-dask-cluster-eea516ff-5.default-tenant:8786

Mismatched versions found

+-------------+--------+-----------+---------+
| Package | client | scheduler | workers |
+-------------+--------+-----------+---------+
| blosc | 1.7.0 | 1.10.6 | None |
| cloudpickle | 1.6.0 | 2.0.0 | None |
| distributed | 2.30.0 | 2.30.1 | None |
| lz4 | 3.1.0 | 3.1.3 | None |
| msgpack | 1.0.0 | 1.0.2 | None |
| tornado | 6.0.4 | 6.1 | None |
+-------------+--------+-----------+---------+
Notes:
- msgpack: Variation is ok, as long as everything is above 0.6

<IPython.core.display.HTML object>
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<Client: 'tcp://10.200.0.72:8786' processes=0 threads=0, memory=0 B>

Define the parallel work

Set the parallel_runs attribute to indicate how many child tasks to run in parallel. Set the dask_cluster_uri to
point to the dask cluster (if it’s not set the cluster uri uses dask local). You can also set the teardown_dask flag to free
up all the dask resources after completion.

grid_params = {"p2": [2,1,4,1], "p3": [10,20]}
task = mlrun.new_task(params={"p1": 8}, inputs={'data': 'https://s3.wasabisys.com/
→˓iguazio/data/iris/iris_dataset.csv'})
task.with_hyper_params(

grid_params, selector="r1", strategy="grid", parallel_runs=4, dask_cluster_uri=uri,␣
→˓teardown_dask=True
)

<mlrun.model.RunTemplate at 0x7f673d7b1910>

Define a job that will take the code (using code_to_function) and run it over the cluster

fn = mlrun.code_to_function(name='hyper-tst', kind='job', image='mlrun/ml-models')

run = fn.run(task, handler=hyper_func2)

> 2021-10-23 12:49:56,388 [info] starting run hyper-tst-hyper_func2␣
→˓uid=50eb72f5b0734954b8b1c57494f325bc DB=http://mlrun-api:8080
> 2021-10-23 12:49:56,565 [info] Job is running in the background, pod: hyper-tst-hyper-
→˓func2-9g6z8
> 2021-10-23 12:49:59,813 [info] trying dask client at: tcp://mlrun-dask-cluster-
→˓eea516ff-5.default-tenant:8786
> 2021-10-23 12:50:09,828 [warning] remote scheduler at tcp://mlrun-dask-cluster-
→˓eea516ff-5.default-tenant:8786 not ready, will try to restart Timed out trying to␣
→˓connect to tcp://mlrun-dask-cluster-eea516ff-5.default-tenant:8786 after 10 s
> 2021-10-23 12:50:15,733 [info] using remote dask scheduler (mlrun-dask-cluster-
→˓04574796-5) at: tcp://mlrun-dask-cluster-04574796-5.default-tenant:8786
remote dashboard: default-tenant.app.yh38.iguazio-cd2.com:32577
> --------------- Iteration: (1) ---------------

sepal length (cm) sepal width (cm) ... petal width (cm) label
0 5.1 3.5 ... 0.2 0
1 4.9 3.0 ... 0.2 0
2 4.7 3.2 ... 0.2 0
3 4.6 3.1 ... 0.2 0
4 5.0 3.6 ... 0.2 0

[5 rows x 5 columns]
> 2021-10-23 12:50:21,353 [info] p2=2, p3=10, r1=20 at mlrun-dask-cluster-04574796-5k5lhq

> --------------- Iteration: (3) ---------------
sepal length (cm) sepal width (cm) ... petal width (cm) label

0 5.1 3.5 ... 0.2 0
1 4.9 3.0 ... 0.2 0

(continues on next page)
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2 4.7 3.2 ... 0.2 0
3 4.6 3.1 ... 0.2 0
4 5.0 3.6 ... 0.2 0

[5 rows x 5 columns]
> 2021-10-23 12:50:21,459 [info] p2=4, p3=10, r1=40 at mlrun-dask-cluster-04574796-5k5lhq

> --------------- Iteration: (4) ---------------
sepal length (cm) sepal width (cm) ... petal width (cm) label

0 5.1 3.5 ... 0.2 0
1 4.9 3.0 ... 0.2 0
2 4.7 3.2 ... 0.2 0
3 4.6 3.1 ... 0.2 0
4 5.0 3.6 ... 0.2 0

[5 rows x 5 columns]
> 2021-10-23 12:50:21,542 [info] p2=1, p3=10, r1=10 at mlrun-dask-cluster-04574796-5k5lhq

> --------------- Iteration: (6) ---------------
sepal length (cm) sepal width (cm) ... petal width (cm) label

0 5.1 3.5 ... 0.2 0
1 4.9 3.0 ... 0.2 0
2 4.7 3.2 ... 0.2 0
3 4.6 3.1 ... 0.2 0
4 5.0 3.6 ... 0.2 0

[5 rows x 5 columns]
> 2021-10-23 12:50:21,629 [info] p2=1, p3=20, r1=20 at mlrun-dask-cluster-04574796-5k5lhq

> --------------- Iteration: (7) ---------------
sepal length (cm) sepal width (cm) ... petal width (cm) label

0 5.1 3.5 ... 0.2 0
1 4.9 3.0 ... 0.2 0
2 4.7 3.2 ... 0.2 0
3 4.6 3.1 ... 0.2 0
4 5.0 3.6 ... 0.2 0

[5 rows x 5 columns]
> 2021-10-23 12:50:21,792 [info] p2=4, p3=20, r1=80 at mlrun-dask-cluster-04574796-5k5lhq

> --------------- Iteration: (8) ---------------
sepal length (cm) sepal width (cm) ... petal width (cm) label

0 5.1 3.5 ... 0.2 0
1 4.9 3.0 ... 0.2 0
2 4.7 3.2 ... 0.2 0
3 4.6 3.1 ... 0.2 0
4 5.0 3.6 ... 0.2 0

[5 rows x 5 columns]
> 2021-10-23 12:50:22,052 [info] p2=1, p3=20, r1=20 at mlrun-dask-cluster-04574796-5k5lhq

> --------------- Iteration: (2) ---------------

(continues on next page)
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sepal length (cm) sepal width (cm) ... petal width (cm) label
0 5.1 3.5 ... 0.2 0
1 4.9 3.0 ... 0.2 0
2 4.7 3.2 ... 0.2 0
3 4.6 3.1 ... 0.2 0
4 5.0 3.6 ... 0.2 0

[5 rows x 5 columns]
> 2021-10-23 12:50:23,134 [info] p2=1, p3=10, r1=10 at mlrun-dask-cluster-04574796-5j6v59

> --------------- Iteration: (5) ---------------
sepal length (cm) sepal width (cm) ... petal width (cm) label

0 5.1 3.5 ... 0.2 0
1 4.9 3.0 ... 0.2 0
2 4.7 3.2 ... 0.2 0
3 4.6 3.1 ... 0.2 0
4 5.0 3.6 ... 0.2 0

[5 rows x 5 columns]
> 2021-10-23 12:50:23,219 [info] p2=2, p3=20, r1=40 at mlrun-dask-cluster-04574796-5k5lhq

> 2021-10-23 12:50:23,261 [info] tearing down the dask cluster..
> 2021-10-23 12:50:43,363 [info] best iteration=7, used criteria r1
> 2021-10-23 12:50:43,626 [info] run executed, status=completed
final state: completed

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-10-23 12:50:53,303 [info] run executed, status=completed

29.4.3 Running the workers using Nuclio

Nuclio is a high-performance serverless engine that can process many events in parallel. It can also separate initial-
ization from execution. Certain parts of the code (imports, loading data, etc.) can be done once per worker vs. in any
run.

Nuclio, by default, process events (http, stream, . . . ). There is a special Nuclio kind that runs MLRun jobs (nu-
clio:mlrun).

Notes

• Nuclio tasks are relatively short (preferably under 5 minutes), use it for running many iterations where each
individual run is less than 5 min.

• Use context.logger to drive text outputs (vs print()).
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Create a nuclio:mlrun function

fn = mlrun.code_to_function(name='hyper-tst2', kind='nuclio:mlrun', image='mlrun/mlrun')
# replicas * workers need to match or exceed parallel_runs
fn.spec.replicas = 2
fn.with_http(workers=2)
fn.deploy()

> 2021-10-23 12:51:10,152 [info] Starting remote function deploy
2021-10-23 12:51:10 (info) Deploying function
2021-10-23 12:51:10 (info) Building
2021-10-23 12:51:10 (info) Staging files and preparing base images
2021-10-23 12:51:10 (info) Building processor image
2021-10-23 12:51:11 (info) Build complete
2021-10-23 12:51:19 (info) Function deploy complete
> 2021-10-23 12:51:22,296 [info] successfully deployed function: {'internal_invocation_
→˓urls': ['nuclio-default-hyper-tst2.default-tenant.svc.cluster.local:8080'], 'external_
→˓invocation_urls': ['default-tenant.app.yh38.iguazio-cd2.com:32760']}

'http://default-tenant.app.yh38.iguazio-cd2.com:32760'

Run the parallel task over the function

# this is required to fix Jupyter issue with asyncio (not required outside of Jupyter)
# run it only once
import nest_asyncio
nest_asyncio.apply()

grid_params = {"p2": [2,1,4,1], "p3": [10,20]}
task = mlrun.new_task(params={"p1": 8}, inputs={'data': 'https://s3.wasabisys.com/
→˓iguazio/data/iris/iris_dataset.csv'})
task.with_hyper_params(

grid_params, selector="r1", strategy="grid", parallel_runs=4, max_errors=3
)
run = fn.run(task, handler=hyper_func2)

> 2021-10-23 12:51:31,618 [info] starting run hyper-tst2-hyper_func2␣
→˓uid=97cc3e255f3c4c93822b0154d63f47f5 DB=http://mlrun-api:8080
> --------------- Iteration: (4) ---------------
2021-10-23 12:51:32.130812 info logging run results to: http://mlrun-api:8080 worker_
→˓id=1
2021-10-23 12:51:32.401258 info p2=1, p3=10, r1=10 at nuclio-default-hyper-tst2-
→˓5d4976b685-47dh6 worker_id=1

> --------------- Iteration: (2) ---------------
2021-10-23 12:51:32.130713 info logging run results to: http://mlrun-api:8080 worker_
→˓id=0
2021-10-23 12:51:32.409468 info p2=1, p3=10, r1=10 at nuclio-default-hyper-tst2-
→˓5d4976b685-47dh6 worker_id=0

(continues on next page)
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> --------------- Iteration: (1) ---------------
2021-10-23 12:51:32.130765 info logging run results to: http://mlrun-api:8080 worker_
→˓id=0
2021-10-23 12:51:32.432121 info p2=2, p3=10, r1=20 at nuclio-default-hyper-tst2-
→˓5d4976b685-2gdtc worker_id=0

> --------------- Iteration: (5) ---------------
2021-10-23 12:51:32.568848 info logging run results to: http://mlrun-api:8080 worker_
→˓id=0
2021-10-23 12:51:32.716415 info p2=2, p3=20, r1=40 at nuclio-default-hyper-tst2-
→˓5d4976b685-47dh6 worker_id=0

> --------------- Iteration: (7) ---------------
2021-10-23 12:51:32.855399 info logging run results to: http://mlrun-api:8080 worker_
→˓id=1
2021-10-23 12:51:33.054417 info p2=4, p3=20, r1=80 at nuclio-default-hyper-tst2-
→˓5d4976b685-2gdtc worker_id=1

> --------------- Iteration: (6) ---------------
2021-10-23 12:51:32.970002 info logging run results to: http://mlrun-api:8080 worker_
→˓id=0
2021-10-23 12:51:33.136621 info p2=1, p3=20, r1=20 at nuclio-default-hyper-tst2-
→˓5d4976b685-47dh6 worker_id=0

> --------------- Iteration: (3) ---------------
2021-10-23 12:51:32.541187 info logging run results to: http://mlrun-api:8080 worker_
→˓id=1
2021-10-23 12:51:33.301200 info p2=4, p3=10, r1=40 at nuclio-default-hyper-tst2-
→˓5d4976b685-47dh6 worker_id=1

> --------------- Iteration: (8) ---------------
2021-10-23 12:51:33.419442 info logging run results to: http://mlrun-api:8080 worker_
→˓id=0
2021-10-23 12:51:33.672165 info p2=1, p3=20, r1=20 at nuclio-default-hyper-tst2-
→˓5d4976b685-47dh6 worker_id=0

> 2021-10-23 12:51:34,153 [info] best iteration=7, used criteria r1

<IPython.core.display.HTML object>

<IPython.core.display.HTML object>

> 2021-10-23 12:51:34,420 [info] run executed, status=completed
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CI/CD, ROLLING UPGRADES, GIT

MLRun workflows can run inside the CI system. The most common method is to use the CLI command mlrun
project to load the project and run a workflow as part of a code update (e.g. pull request, etc.). The pipeline tasks
are executed on the Kubernetes cluster, which is orchestrated by MLRun.

When MLRun is executed inside a GitHub Action or GitLab CI/CD pipeline it detects the environment attributes
automatically (e.g. repo, commit id, etc.). In addition, a few environment variables and credentials must be set:

• MLRUN_DBPATH — url of the MLRun cluster.

• V3IO_USERNAME — username in the remote Iguazio cluster.

• V3IO_ACCESS_KEY — access key to the remote Iguazio cluster.

• GIT_TOKEN or GITHUB_TOKEN — Github/Gitlab API token (set automatically in Github Actions).

• SLACK_WEBHOOK — optional. Slack API key when using slack notifications.

When the workflow runs inside the Git CI system it reports the pipeline progress and results back into the Git tracking
system, similar to:
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Contents

• Using GitHub Actions

• Using GitLab CI/CD

• Using Jenkins Pipeline

30.1 Using GitHub Actions

When running using GitHub Actions you need to set the credentials/secrets and add a script under the .github/
workflows/ directory, which is executed when the code is commited/pushed.

Example script that is invoked when you add the comment “/run” to your pull request:

name: mlrun-project-workflow
on: [issue_comment]

jobs:
submit-project:
if: github.event.issue.pull_request != null && startsWith(github.event.comment.body,

→˓'/run')
runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v2

(continues on next page)
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- name: Set up Python 3.7
uses: actions/setup-python@v1
with:
python-version: '3.7'
architecture: 'x64'

- name: Install mlrun
run: python -m pip install pip install mlrun

- name: Submit project
run: python -m mlrun project ./ -w -r main ${CMD:5}
env:
V3IO_USERNAME: ${{ secrets.V3IO_USERNAME }}
V3IO_API: ${{ secrets.V3IO_API }}
V3IO_ACCESS_KEY: ${{ secrets.V3IO_ACCESS_KEY }}
MLRUN_DBPATH: ${{ secrets.MLRUN_DBPATH }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
SLACK_WEBHOOK: ${{ secrets.SLACK_WEBHOOK }}
CMD: ${{ github.event.comment.body}}

See the full example in https://github.com/mlrun/project-demo

30.2 Using GitLab CI/CD

When running using GitLab CI/CD you need to set the credentials/secrets and update the script .gitlab-ci.yml
directory, which is executed when code is commited/pushed.

Example script that is invoked when you create a pull request (merge requests):

image: mlrun/mlrun

run:
script:
- python -m mlrun project ./ -w -r ci

only:
- merge_requests

See the full example in https://gitlab.com/yhaviv/test2

30.3 Using Jenkins Pipeline

When using Jenkins Pipeline you need to set up the credentials/secrets in Jenkins and and update the script
Jenkinsfile in your codebase. You can trigger the Jenkins pipeline either through Jenkins triggers or through the
GitHub webhooks.

Example Jenkinesfile that is invoked when you start a Jenkins pipeline (via triggers or GitHub webhooks):

pipeline {
agent any
environment {
RELEASE='1.0.0'

(continues on next page)
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PROJECT_NAME='project-demo'
}
stages {

stage('Audit tools') {
steps{

auditTools()
}

}
stage('Build') {

environment {
MLRUN_DBPATH='https://mlrun-api.default-tenant.app.us-sales-341.iguazio-

→˓cd1.com'
V3IO_ACCESS_KEY=credentials('V3IO_ACCESS_KEY')
V3IO_USERNAME='xingsheng'

}
agent {

docker {
image 'mlrun/mlrun:1.1.1'

}
}
steps {

echo "Building release ${RELEASE} for project ${PROJECT_NAME}..."
sh 'chmod +x build.sh'
withCredentials([string(credentialsId: 'an-api-key', variable: 'API_KEY

→˓')]) {
sh '''

./build.sh
'''

}
}

}
stage('Test') {

steps {
echo "Testing release ${RELEASE}"

}
}

}
post {

success {
slackSend channel: '#builds',

color: 'good',
message: "Project ${env.PROJECT_NAME}, success: ${currentBuild.

→˓fullDisplayName}."
}
failure {

slackSend channel: '#builds',
color: 'danger',
message: "Project ${env.PROJECT_NAME}, FAILED: ${currentBuild.

→˓fullDisplayName}."
}

}
}

(continues on next page)
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void auditTools() {
sh '''

git version
docker version

'''
}

After the Jenkins pipeline is complete, you can see the MLRun job in the MLRun UI.

See the full example in https://github.com/mlrun/project-demo.
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BASIC MODEL SERVING CLASS

Model serving classes implement the full model serving functionality, which includes loading models, pre- and post-
processing, prediction, explainability, and model monitoring.

Model serving classes must inherit from mlrun.serving.V2ModelServer, and at the minimum implement the
load() (download the model file(s) and load the model into memory) and predict() (accept request payload and
return prediction/inference results) methods.

The class is initialized automatically by the model server and can run locally as part of a nuclio serverless function, or
as part of a real-time pipeline.

You need to implement two mandatory methods:

• load() — download the model file(s) and load the model into memory, note this can be done synchronously or
asynchronously.

• predict() — accept request payload and return prediction/inference results.

You can override additional methods : preprocess, validate, postprocess, explain. You can add a custom api
endpoint by adding the method op_xx(event). Invoke it by calling the /xx (operation = xx).

In this section

• Minimal sklearn serving function example

• load() method

• predict() method

• explain() method

• pre/post and validate hooks

• Models, routers and graphs

• Creating a model serving function (service)

• Model monitoring
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31.1 Minimal sklearn serving function example

from cloudpickle import load
import numpy as np
import mlrun

class ClassifierModel(mlrun.serving.V2ModelServer):
def load(self):

"""load and initialize the model and/or other elements"""
model_file, extra_data = self.get_model('.pkl')
self.model = load(open(model_file, 'rb'))

def predict(self, body: dict) -> list:
"""Generate model predictions from sample"""
feats = np.asarray(body['inputs'])
result: np.ndarray = self.model.predict(feats)
return result.tolist()

Test the function locally using the mock server:

import mlrun
from sklearn.datasets import load_iris

fn = mlrun.new_function('my_server', kind='serving')

# set the topology/router and add models
graph = fn.set_topology("router")
fn.add_model("model1", class_name="ClassifierModel", model_path="<path1>")
fn.add_model("model2", class_name="ClassifierModel", model_path="<path2>")

# create and use the graph simulator
server = fn.to_mock_server()
x = load_iris()['data'].tolist()
result = server.test("/v2/models/model1/infer", {"inputs": x})

31.2 load() method

In the load method, download the model from external store, run the algorithm/framework load() call, and do any
other initialization logic.

The load runs synchronously (the deploy is stalled until load completes). This can be an issue for large models and
cause a readiness timeout. You can increase the function spec.readiness_timeout, or alternatively choose async
loading (load () runs in the background) by setting the function spec.load_mode = "async".

The function self.get_model() downloads the model metadata object and main file (into model_file path). Ad-
ditional files can be accessed using the returned extra_data (dict of dataitem objects).

The model metadata object is stored in self.model_spec and provides model parameters, metrics, schema, etc.
Parameters can be accessed using self.get_param(key). The parameters can be specified in the model or during
the function/model deployment.
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31.3 predict() method

The predict method is called when you access the /infer or /predict url suffix (operation). The method accepts the
request object (as dict), see Model server API. And it should return the specified response object.

31.4 explain() method

The explain method provides a hook for model explainability, and is accessed using the /explain operation.

31.5 pre/post and validate hooks

You can overwrite the preprocess, validate, and postprocess methods for additional control The call flow is:

pre-process -> validate -> predict/explain -> post-process

31.6 Models, routers and graphs

Every serving function can host multiple models and logical steps. Multiple functions can connect in a graph to form
complex real-time pipelines.

The basic serving function has a logical router with routes to multiple child models. The url or the message deter-
mines which model is selected, e.g. using the url schema:

/v2/models/<model>[/versions/<ver>]/operation

Note

The model, version and operation can also be specified in the message body to support streaming protocols (e.g.
Kafka).

More complex routers can be used to support ensembles (send the request to all child models and aggregate the result),
multi-armed-bandit, etc.

You can use a pre-defined Router class, or write your own custom router. Routera can route to models on the same
function or access models on a separate function.

To specify the topology, router class and class args use .set_topology() with your function.

31.7 Creating a model serving function (service)

To provision a serving function, you need to create an MLRun function of type serving. This can be done by using
the code_to_function() call from a notebook. You can also import an existing serving function/template from the
marketplace.

Example (run inside a notebook): this code converts a notebook to a serving function and adding a model to it:

31.3. predict() method 333
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from mlrun import code_to_function
fn = code_to_function('my-function', kind='serving')
fn.add_model('m1', model_path=<model-artifact/dir>, class_name='MyClass', x=100)

See .add_model() docstring for help and parameters.

See the full Model Server example.

If you want to use multiple versions for the same model, use : to separate the name from the version. For example, if
the name is mymodel:v2 it means model name mymodel version v2.

You should specify the model_path (url of the model artifact/dir) and the class_name name (or class module.
submodule.class). Alternatively, you can set the model_url for calling a model that is served by another function
(can be used for ensembles).

The function object(fn) accepts many options. You can specify replicas range (auto-scaling), cpu/gpu/mem resources,
add shared volume mounts, secrets, and any other Kubernetes resource through the fn.spec object or fn methods.

For example, fn.gpu(1) means each replica uses one GPU.

To deploy a model, simply call:

fn.deploy()

You can also deploy a model from within an ML pipeline (check the various demos for details).

31.8 Model monitoring

Model activities can be tracked into a real-time stream and time-series DB. The monitoring data is used to create real-
time dashboards and track model accuracy and drift. To set the tracking stream options, specify the following function
spec attributes:

fn.set_tracking(stream_path, batch, sample)

• stream_path — the v3io stream path (e.g. v3io:///users/..)

• sample — optional, sample every N requests

• batch — optional, send micro-batches every N requests
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TEST AND DEPLOY A MODEL SERVER

In this section

• Testing the model

• Deploying the model

32.1 Testing the model

MLRun provides a mock server as part of the serving runtime. This gives you the ability to deploy your serving
function in your local environment for testing purposes.

serving_fn = code_to_function(name='myService', kind='serving', image='mlrun/mlrun')
serving_fn.add_model('my_model', model_path=model_file_path)
server = serving_fn.to_mock_server()

You can use test data and programmatically invoke the predict() method of mock server. In this example, the model
is expecting a python dictionary as input.

my_data = '''{"inputs":[[5.1, 3.5, 1.4, 0.2],[7.7, 3.8, 6.7, 2.2]]}'''
server.test("/v2/models/my_model/infer", body=my_data)

The data structure used in the body parameter depends on how the predict() method of the model server is defined.
For examples of how to define your own model server class, see here.

To review the mock server api, see here.

32.2 Deploying the model

Deploying models in MLRun uses a special function type serving. You can create a serving function using the
code_to_function() call from a notebook. You can also import an existing serving function/template from the
marketplace.

This example converts a notebook to a serving function and adds a model to it:

from mlrun import code_to_function
fn = code_to_function('my-function', kind='serving')
fn.add_model('m1', model_path=<model-artifact/dir>, class_name='MyClass', x=100)

See .add_model() docstring for help and parameters.

See the full Model Server example.
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If you want to use multiple versions for the same model, use : to separate the name from the version. For example, if
the name is mymodel:v2 it means model name mymodel version v2.

You should specify the model_path (url of the model artifact/dir) and the class_name name (or class module.
submodule.class). Alternatively, you can set the model_url for calling a model that is served by another function
(can be used for ensembles).

The function object(fn) accepts many options. You can specify replicas range (auto-scaling), cpu/gpu/mem resources,
add shared volume mounts, secrets, and any other Kubernetes resource through the fn.spec object or fn methods.

For example, fn.gpu(1) means each replica uses one GPU.

To deploy a model, simply call:

fn.deploy()

You can also deploy a model from within an ML pipeline (check the various demos for details).
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USING BUILT-IN MODEL SERVING CLASSES

MLRun includes built-in classes for commonly used frameworks. While you can create your own class, it is often not
necessary to write one if you use these standard classes.

The following table specifies, for each framework, the relevant pre-integrated image and the corresponding MLRun
ModelServer serving class:

framework image serving class
Scikit-learn mlrun/mlrun mlrun.frameworks.sklearn.SklearnModelServer
TensorFlow.Keras mlrun/ml-models mlrun.frameworks.tf_keras.TFKerasModelServer
ONNX mlrun/ml-models mlrun.frameworks.onnx.ONNXModelServer
XGBoost mlrun/ml-models mlrun.frameworks.xgboost.XGBoostModelServer
LightGBM mlrun/ml-models mlrun.frameworks.lgbm.LGBMModelServer
PyTorch mlrun/ml-models mlrun.frameworks.pytorch.PyTorchModelServer

For GPU support, use the mlrun/ml-models-gpu image (adding GPU drivers and support).

33.1 Example

The following code shows how to create a basic serving model using Scikit-learn.

import os
import urllib.request
import mlrun

model_path = os.path.abspath('sklearn.pkl')

# Download the model file locally
urllib.request.urlretrieve(mlrun.get_sample_path('models/serving/sklearn.pkl'), model_
→˓path)

# Set the base project name
project_name_base = 'serving-test'

# Initialize the MLRun project object
project = mlrun.get_or_create_project(project_name_base, context="./", user_project=True)

serving_function_image = "mlrun/mlrun"
serving_model_class_name = "mlrun.frameworks.sklearn.SklearnModelServer"

(continues on next page)
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# Create a serving function
serving_fn = mlrun.new_function("serving", project=project.name, kind="serving",␣
→˓image=serving_function_image)

# Add a model, the model key can be anything we choose. The class will be the built-in␣
→˓scikit-learn model server class
model_key = "scikit-learn"
serving_fn.add_model(key=model_key,

model_path=model_path,
class_name=serving_model_class_name)

After the serving function is created, you can test it:

# Test data to send
my_data = {"inputs":[[5.1, 3.5, 1.4, 0.2],[7.7, 3.8, 6.7, 2.2]]}

# Create a mock server in order to test the model
mock_server = serving_fn.to_mock_server()

# Test the serving function
mock_server.test(f"/v2/models/{model_key}/infer", body=my_data)

Similarly, you can deploy the serving function and test it with some data:

serving_fn.with_code(body=" ") # Workaround, required only for mlrun <= 1.0.2

# Deploy the serving function
serving_fn.apply(mlrun.auto_mount()).deploy()

# Check the result using the deployed serving function
serving_fn.invoke(path=f'/v2/models/{model_key}/infer',body=my_data)
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MODEL SERVING GRAPH

In this section

• Serving Functions

• Topology

• Remote execution

• Examples

34.1 Serving Functions

To start using a serving graph, you first need a serving function. A serving function contains the serving class code to
run the model and all the code necessary to run the tasks. MLRun comes with a wide library of tasks. If you use just
those, you don’t have to add any special code to the serving function, you just have to provide the code that runs the
model. For more information about serving classes see Basic model serving class.

For example, the following code is a basic model serving class:

# mlrun: start-code

from cloudpickle import load
from typing import List
import numpy as np

import mlrun

class ClassifierModel(mlrun.serving.V2ModelServer):
def load(self):

"""load and initialize the model and/or other elements"""
model_file, extra_data = self.get_model(".pkl")
self.model = load(open(model_file, "rb"))

def predict(self, body: dict) -> List:
"""Generate model predictions from sample."""
feats = np.asarray(body["inputs"])
result: np.ndarray = self.model.predict(feats)
return result.tolist()

# mlrun: end-code
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To obtain the serving function, use the code_to_function and specify kind to be serving.

fn = mlrun.code_to_function("serving_example",
kind="serving",
image="mlrun/mlrun")

34.2 Topology

34.2.1 Router

Once you have a serving function, you need to choose the graph topology. The default is router topology. With the
router topology you can specify different machine learning models. Each model has a logical name. This name is
used to route to the correct model when calling the serving function.

from sklearn.datasets import load_iris

# set the topology/router
graph = fn.set_topology("router")

# Add the model
fn.add_model("model1", class_name="ClassifierModel", model_path="https://s3.wasabisys.
→˓com/iguazio/models/iris/model.pkl")

# Add additional models
#fn.add_model("model2", class_name="ClassifierModel", model_path="<path2>")

# create and use the graph simulator
server = fn.to_mock_server()
x = load_iris()['data'].tolist()
result = server.test("/v2/models/model1/infer", {"inputs": x})

print(result)

> 2021-11-02 04:18:36,925 [info] model model1 was loaded
> 2021-11-02 04:18:36,926 [info] Initializing endpoint records
> 2021-11-02 04:18:36,965 [info] Loaded ['model1']
{'id': '6bd11e864805484ea888f58e478d1f91', 'model_name': 'model1', 'outputs': [0, 0, 0,␣
→˓0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,␣
→˓0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1,␣
→˓1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,␣
→˓1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,␣
→˓2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2,␣
→˓2, 2]}
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34.2.2 Flow

You can use the flow topology to specify tasks, which typically manipulates the data. The most common scenario is
pre-processing of data prior to the model execution.

Note: Once the topology is set, you cannot change an existing function toplogy.

In this topology, you build and connect the graph (DAG) by adding steps using the step.to() method, or by using the
graph.add_step() method.

The step.to() is typically used to chain steps together. graph.add_step can add steps anywhere on
the graph and has before and after parameters to specify the location of the step.

fn2 = mlrun.code_to_function("serving_example_flow",
kind="serving",
image="mlrun/mlrun")

graph2 = fn2.set_topology("flow")

graph2_enrich = graph2.to("storey.Extend", name="enrich", _fn='({"tag": "something"})')

# add an Ensemble router with two child models (routes)
router = graph2.add_step(mlrun.serving.ModelRouter(), name="router", after="enrich")
router.add_route("m1", class_name="ClassifierModel", model_path='https://s3.wasabisys.
→˓com/iguazio/models/iris/model.pkl')
router.respond()

# Add additional models
#router.add_route("m2", class_name="ClassifierModel", model_path=path2)

# plot the graph (using Graphviz)
graph2.plot(rankdir='LR')

<graphviz.dot.Digraph at 0x7fd46e4dda50>

fn2_server = fn2.to_mock_server()

result = fn2_server.test("/v2/models/m1/infer", {"inputs": x})

print(result)

> 2021-11-02 04:18:42,142 [info] model m1 was loaded
> 2021-11-02 04:18:42,142 [info] Initializing endpoint records
> 2021-11-02 04:18:42,183 [info] Loaded ['m1']
{'id': 'f713fd7eedeb431eba101b13c53a15b5'}
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34.3 Remote execution

You can chain functions together with remote execution. This allows you to:

• Call existing functions from the graph and reuse them from other graphs.

• Scale up and down different components individually.

Calling a remote function can either use HTTP or via a queue (streaming).

34.3.1 HTTP

Calling a function using http uses the special $remote class. First deploy the remote function:

remote_func_name = "serving-example-flow"
project_name = "graph-basic-concepts"
fn_remote = mlrun.code_to_function(remote_func_name,

project=project_name,
kind="serving",
image="mlrun/mlrun")

fn_remote.add_model("model1", class_name="ClassifierModel", model_path="https://s3.
→˓wasabisys.com/iguazio/models/iris/model.pkl")

remote_addr = fn_remote.deploy()

> 2022-03-17 08:20:40,674 [info] Starting remote function deploy
2022-03-17 08:20:40 (info) Deploying function
2022-03-17 08:20:40 (info) Building
2022-03-17 08:20:40 (info) Staging files and preparing base images
2022-03-17 08:20:40 (info) Building processor image
2022-03-17 08:20:42 (info) Build complete
2022-03-17 08:20:47 (info) Function deploy complete
> 2022-03-17 08:20:48,289 [info] successfully deployed function: {'internal_invocation_
→˓urls': ['nuclio-graph-basic-concepts-serving-example-flow.default-tenant.svc.cluster.
→˓local:8080'], 'external_invocation_urls': ['graph-basic-concepts-serving-example-flow-
→˓graph-basic-concepts.default-tenant.app.maor-gcp2.iguazio-cd0.com/']}

Create a new function with a graph and call the remote function above:

fn_preprocess = mlrun.new_function("preprocess", kind="serving")
graph_preprocessing = fn_preprocess.set_topology("flow")

graph_preprocessing.to("storey.Extend", name="enrich", _fn='({"tag": "something"})').to(
"$remote", "remote_func", url=f'{remote_addr}v2/models/model1/

→˓infer', method='put').respond()

graph_preprocessing.plot(rankdir='LR')

<graphviz.dot.Digraph at 0x7f57dc96a0d0>

fn3_server = fn_preprocess.to_mock_server()
my_data = '''{"inputs":[[5.1, 3.5, 1.4, 0.2],[7.7, 3.8, 6.7, 2.2]]}'''

(continues on next page)
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result = fn3_server.test("/v2/models/my_model/infer", body=my_data)
print(result)

> 2022-03-17 08:20:48,374 [warning] run command, file or code were not specified
{'id': '3a1dd36c-e7de-45af-a0c4-72e3163ba92a', 'model_name': 'model1', 'outputs': [0, 2]}

34.3.2 Queue (streaming)

You can use queues to send events from one part of the graph to another and to decouple the processing of those parts.
Queues are better suited to deal with bursts of events, since all the events are stored in the queue until they are processed.

V3IO stream example

The example below uses a V3IO stream, which is a fast real-time implementation of a stream that allows processing of
events at very low latency.

%%writefile echo.py
def echo_handler(x):

print(x)
return x

Overwriting echo.py

Configure the streams

import os
streams_prefix = f"v3io:///users/{os.getenv('V3IO_USERNAME')}/examples/graph-basic-
→˓concepts"

input_stream = streams_prefix + "/in-stream"
out_stream = streams_prefix + "/out-stream"
err_stream = streams_prefix + "/err-stream"

Alternativey, use Kafka to configure the streams:

kafka_prefix = f"kafka://{broker}/"
internal_topic = kafka_prefix + "in-topic"
out_topic = kafka_prefix + "out-topic"
err_topic = kafka_prefix + "err-topic"

Create the graph. Note that in the to method the class name is specified to be >> or $queue to specify that this is a
queue.

fn_preprocess2 = mlrun.new_function("preprocess", kind="serving")
fn_preprocess2.add_child_function('echo_func', './echo.py', 'mlrun/mlrun')

graph_preprocess2 = fn_preprocess2.set_topology("flow")

graph_preprocess2.to("storey.Extend", name="enrich", _fn='({"tag": "something"})')\
.to(">>", "input_stream", path=input_stream)\

(continues on next page)

34.3. Remote execution 343



mlrun, Release UNKNOWN

(continued from previous page)

.to(name="echo", handler="echo_handler", function="echo_func")\

.to(">>", "output_stream", path=out_stream)

graph_preprocess2.plot(rankdir='LR')

<graphviz.dot.Digraph at 0x7f57c7907990>

from echo import *

fn4_server = fn_preprocess2.to_mock_server(current_function="*")

result = fn4_server.test("/v2/models/my_model/infer", body=my_data)

print(result)

> 2022-03-17 08:20:55,182 [warning] run command, file or code were not specified
{'id': 'a6efe8217b024ec7a7e02cf0b7850b91'}
{'inputs': [[5.1, 3.5, 1.4, 0.2], [7.7, 3.8, 6.7, 2.2]], 'tag': 'something'}

Kafka stream example

%%writefile echo.py
def echo_handler(x):

print(x)
return x

Overwriting echo.py

Configure the streams

import os

input_topic = "in-topic"
out_topic = "out-topic"
err_topic = "err-topic"

# replace this
brokers = "<broker IP>"

Create the graph. Note that in the to method the class name is specified to be >> or $queue to specify that this is a
queue.

import mlrun

fn_preprocess2 = mlrun.new_function("preprocess", kind="serving")
fn_preprocess2.add_child_function('echo_func', './echo.py', 'mlrun/mlrun')

graph_preprocess2 = fn_preprocess2.set_topology("flow")

graph_preprocess2.to("storey.Extend", name="enrich", _fn='({"tag": "something"})')\
(continues on next page)
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.to(">>", "input_stream", path=input_topic, kafka_bootstrap_
→˓servers=brokers)\

.to(name="echo", handler="echo_handler", function="echo_func")\

.to(">>", "output_stream", path=out_topic, kafka_bootstrap_
→˓servers=brokers)

graph_preprocess2.plot(rankdir='LR')

from echo import *

fn4_server = fn_preprocess2.to_mock_server(current_function="*")

fn4_server.set_error_stream(f"kafka://{brokers}/{err_topic}")

my_data = '''{"inputs":[[5.1, 3.5, 1.4, 0.2],[7.7, 3.8, 6.7, 2.2]]}'''

result = fn4_server.test("/v2/models/my_model/infer", body=my_data)

print(result)

34.4 Examples

34.4.1 NLP processing pipeline with real-time streaming

In some cases it’s useful to split your processing to multiple functions and use streaming protocols to connect those
functions.

See the full notebook example, where the data processing is in the first function/container and the NLP processing is
in the second function. And the second function contains the GPU.

Currently queues support Iguazio v3io and Kafka streams.
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THIRTYFIVE

SERVING WITH THE FEATURE STORE

In this section

• Get online features

• Incorporating to the serving model

35.1 Get online features

The online features are created ad-hoc using MLRun’s feature store online feature service and are served from the nosql
target for real-time performance needs.

To use it, first create an online feature service with the feature vector.

import mlrun.feature_store as fstore

svc = fstore.get_online_feature_service(<feature vector name>)

After creating the service you can use the feature vector’s entity to get the latest feature vector for it. Pass a list of
{<key name>: <key value>} pairs to receive a batch of feature vectors.

fv = svc.get([{<key name>: <key value>}])

35.2 Incorporating to the serving model

You can serve your models using the Real-time serving pipelines (graphs). (See a V2 Model Server (SKLearn) exam-
ple.) You define a serving model class and the computational graph required to run your entire prediction pipeline, and
deploy it as a serverless function using nuclio.

To embed the online feature service in your model server, just create the feature vector service once when the model
initializes, and then use it to retrieve the feature vectors of incoming keys.

You can import ready-made classes and functions from the MLRun function marketplace or write your own. As example
of a scikit-learn based model server:

from cloudpickle import load
import numpy as np
import mlrun
import os

(continues on next page)
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class ClassifierModel(mlrun.serving.V2ModelServer):

def load(self):
"""load and initialize the model and/or other elements"""
model_file, extra_data = self.get_model('.pkl')
self.model = load(open(model_file, 'rb'))

# Setup FS Online service
self.feature_service = mlrun.feature_store.get_online_feature_service('patient-

→˓deterioration')

# Get feature vector statistics for imputing
self.feature_stats = self.feature_service.vector.get_stats_table()

def preprocess(self, body: dict, op) -> list:
# Get patient feature vector
# from the patient_id given in the request
vectors = self.feature_service.get([{'patient_id': patient_id} for patient_id in␣

→˓body['inputs']])

# Impute inf's in the data to the feature's mean value
# using the collected statistics from the Feature store
feature_vectors = []
for fv in vectors:

new_vec = []
for f, v in fv.items():

if np.isinf(v):
new_vec.append(self.feature_stats.loc[f, 'mean'])

else:
new_vec.append(v)

feature_vectors.append(new_vec)

# Set the final feature vector as the inputs
# to pass to the predict function
body['inputs'] = feature_vectors
return body

def predict(self, body: dict) -> list:
"""Generate model predictions from sample"""
feats = np.asarray(body['inputs'])
result: np.ndarray = self.model.predict(feats)
return result.tolist()

Which you can deploy with:

# Create the serving function from the code above
fn = mlrun.code_to_function(<function_name>,

kind='serving')

# Add a specific model to the serving function
fn.add_model(<model_name>,

class_name='ClassifierModel',
(continues on next page)
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model_path=<store_model_file_reference>)

# Enable MLRun's model monitoring
fn.set_tracking()

# Add the system mount to the function so
# it will have access to the model files
fn.apply(mlrun.mount_v3io())

# Deploy the function to the cluster
fn.deploy()

And test using:

fn.invoke('/v2/models/infer', body={<key name>: <key value>})
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THIRTYSIX

CANARY DEPLOYMENT

Note

Relevant when MLRun is executed in the Iguazio platform (“the platform”).

Canary rollout is a known practice to first test a software update on a small number of users before rolling it out to all
users. In machine learning, the main usage is to test a new model on a small subset of users before rolling it out to all
users.

Canary functions are defined using an API gateway. The API gateway is a service that exposes your function as a web
service. Essentially, it is a proxy that forwards requests to your functions and returns the response. You can configure
authentication on the gateway.

The API traffic is randomly directed to the two functions at the percentages you specify. Start with a low percentage
for the canary function. Verify that the canary function works as expected (or modify it until it does work as desired).
Then gradually increase its percentage until you turn it into a production function.

In this section

• Create an API gateway

• Create and use a canary function

36.1 Create an API gateway

To create an API gateway in the UI:

1. In your project page, press API Gateways tab, then press NEW API GATEWAY.

2. Select an Authentication Mode:

• None (default)

• Basic

• Access key

• OAuth2

and fill in any required values.

3. Type in the API Gateway parameters:

• Name: The name of the API Gateway. Required
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• Description: A description of the API Gateway.

• Host: The host of the API Gateway. (Relevant for open-source only.)

• Path: The path of the API Gateway.

4. In Primary, type in the function that is triggered via the API Gateway.

36.2 Create and use a canary function

1. Press Create a canary function and type in the function name.

2. Leave the percentages at 5% and 95% to get started, and verify that the canary function works as expected.

3. Gradually increase the percentage, each time verifying its results.

4. When the percentage is high and you are fully satisfied, turn it into a production function by pressing >
Promote.
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MODEL SERVING API

MLRun Serving follows the same REST API defined by Triton and KFServing v2.

Nuclio also supports streaming protocols (Kafka, kinesis, MQTT, etc.). When streaming, the model name and
operation can be encoded inside the message body.

The APIs are:

• explain

• get model health / readiness

• get model metadata

• get server info

• infer / predict

• list models

37.1 explain

POST /v2/models/[/versions/{VERSION}]/explain

Request body:

{
"id" : $string #optional,
"model" : $string #optional
"parameters" : $parameters #optional,
"inputs" : [ $request_input, ... ],
"outputs" : [ $request_output, ... ] #optional

}

Response structure:

{
"model_name" : $string,
"model_version" : $string #optional,
"id" : $string,
"outputs" : [ $response_output, ... ]

}
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37.2 get model health / readiness

GET v2/models/${MODEL_NAME}[/versions/${VERSION}]/ready

Returns 200 for Ok, 40X for not ready.

37.3 get model metadata

GET v2/models/${MODEL_NAME}[/versions/${VERSION}]

Response example: {"name": "m3", "version": "v2", "inputs": [..], "outputs": [..]}

37.4 get server info

GET /
GET /v2/health

Response example: {'name': 'my-server', 'version': 'v2', 'extensions': []}

37.5 infer / predict

POST /v2/models/<model>[/versions/{VERSION}]/infer

Request body:

{
"id" : $string #optional,
"model" : $string #optional
"data_url" : $string #optional
"parameters" : $parameters #optional,
"inputs" : [ $request_input, ... ],
"outputs" : [ $request_output, ... ] #optional

}

• id: Unique Id of the request, if not provided a random value is provided.

• model: Model to select (for streaming protocols without URLs).

• data_url: Option to load the inputs from an external file/s3/v3io/. . . object.

• parameters: Optional request parameters.

• inputs: List of input elements (numeric values, arrays, or dicts).

• outputs: Optional, requested output values.

Note: You can also send binary data to the function, for example, a JPEG image. The serving engine pre-processor
detects it based on the HTTP content-type and converts it to the above request structure, placing the image bytes array
in the inputs field.
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Response structure:

{
"model_name" : $string,
"model_version" : $string #optional,
"id" : $string,
"outputs" : [ $response_output, ... ]

}

37.6 list models

GET /v2/models/

Response example: {"models": ["m1", "m2", "m3:v1", "m3:v2"]}
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THIRTYEIGHT

MODEL MONITORING (BETA)

Note: Model monitoring is based on Iguazio’s streaming technology. Contact Iguazio to enable this feature.

MLRun’s model monitoring service tracks the performance of models in production to help identify potential issues
with concept drift and prediction accuracy before they impact business goals. Typically, model monitoring is used by
devops for tracking model performance, and by data scientists to track model drift. Two monitoring types are supported:

• Model operational performance (latency, requests per second, etc.).

• Drift detection — identifies potential issues with the model. See Drift Analysis for more details.

Model monitoring provides warning alerts that can be sent to stakeholders for processing.

The model monitoring data can be viewed using Iguazio’s user interface or through Grafana dashboards. Grafana is
an interactive web application visualization tool that can be added as a service in the Iguazio platform. See Model
monitoring using Grafana dashboards for more details.

In this section

38.1 Model monitoring overview (beta)

In this section

• Architecture

• Model monitoring using the Iguazio platform interface

• Model monitoring using Grafana dashboards

38.1.1 Architecture

The model monitoring process flow starts with collecting operational data. The operational data are converted to
vectors, which are posted to the Model Server. The model server is then wrapped around a machine learning model
that uses a function to calculate predictions based on the available vectors. Next, the model server creates a log for the
input and output of the vectors, and the entries are written to the production data stream (a v3io stream). While the
model server is processing the vectors, a Nuclio operation monitors the log of the data stream and is triggered when a
new log entry is detected. The Nuclio function examines the log entry, processes it into statistics which are then written
to the statistics databases (parquet file, time series database and key value database). The parquet files are written as a
feature set under the model monitoring project. The parquet files can be read either using pandas.read_parquet or
feature_set.get_offline_features, like any other feature set. In parallel, a scheduled MLRun job runs reading
the parquet files, performing drift analysis. The drift analysis data is stored so that the user can retrieve it in the Iguazio
UI or in a Grafana dashboard.
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Drift analysis

The model monitoring feature provides drift analysis monitoring. Model drift in machine learning is a situation where
the statistical properties of the target variable (what the model is trying to predict) change over time. In other words,
the production data has changed significantly over the course of time and no longer matches the input data used to train
the model. So, for this new data, accuracy of the model predictions is low. Drift analysis statistics are computed once
an hour. For more information see Concept Drift.

Common terminology

The following terms are used in all the model monitoring pages:

• Total Variation Distance (TVD) — The statistical difference between the actual predictions and the model’s
trained predictions.

• Hellinger Distance — A type of f-divergence that quantifies the similarity between the actual predictions, and
the model’s trained predictions.

• Kullback–Leibler Divergence (KLD) — The measure of how the probability distribution of actual predictions
is different from the second model’s trained reference probability distribution.

• Model Endpoint — A combination of a deployed Nuclio function and the models themselves. One function can
run multiple endpoints; however, statistics are saved per endpoint.

38.1.2 Model monitoring using the Iguazio platform interface

Iguazio’s model monitoring data is available for viewing through the regular platform interface. The platform provides
four information pages with model monitoring data.

• Model endpoint summary list

• Model endpoint overview

• Model drift analysis

• Model features analysis

1. Select a project from the project tiles screen.

2. From the project dashboard, press the Models tile to view the models currently deployed .

3. Press Model Endpoints from the menu to display a list of monitored endpoints. If the Model Monitoring feature
is not enabled, the endpoints list is empty.

Model endpoint summary list

The Model Endpoints summary list provides a quick view of the model monitoring data.
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The summary page contains the following fields:

• Name — the name of the model endpoint

• Version — user configured version taken from model deployment

• Class — the implementation class that is used by the endpoint

• Model — user defined name for the model

• Labels — user configurable tags that are searchable

• Uptime — first request for production data

• **Last Prediction **— most recent request for production data

• **Error Count **— includes prediction process errors such as operational issues (For example, a function in a
failed state), as well as data processing errors (For example, invalid timestamps, request ids, type mismatches
etc.)

• Drift — indication of drift status (no drift (green), possible drift (yellow), drift detected (red))

• Accuracy — a numeric value representing the accuracy of model predictions (N/A)

Note: Model Accuracy is currently under development.

Model endpoint overview

The Model Endpoints overview pane displays general information about the selected model.

The Overview page contains the following fields:
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• UUID — the ID of the deployed model

• Model Class — the implementation class that is used by the endpoint

• Model Artifact — reference to the model’s file location

• Function URI — the MLRun function to access the model

• Last Prediction — most recent request for production data

• Error Count — includes prediction process errors such as operational issues (For example, a function in a failed
state), as well as data processing errors (For example, invalid timestamps, request ids, type mismatches etc.)

• Accuracy — a numeric value representing the accuracy of model predictions (N/A)

• Stream path — the input and output stream of the selected model

Use the ellipsis to view the YAML resource file for details about the monitored resource.

Model drift analysis

The Drift Analysis pane provides performance statistics for the currently selected model.

Each of the following fields has both sum and mean numbers displayed. For definitions of the terms see Common
Terminology.

• TVD

• Hellinger

• KLD

Use the ellipsis to view the YAML resource file for details about the monitored resource.

Model features analysis

The Features Analysis pane provides details of the drift analysis in a table format with each feature in the selected
model on its own line.
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Each field has a pair of columns. The Expected column displays the results from the model training phase, and the
Actual column displays the results from the live production data. The following fields are available:

• Mean

• STD (Standard deviation)

• Min

• Max

• TVD

• Hellinger

• KLD

• Histograms—the approximate representation of the distribution of the data. Hover over the bars in the graph for
the details.

Use the ellipsis to view the YAML resource file for details about the monitored resource.

38.1.3 Model monitoring using Grafana dashboards

You can deploy a Grafana service in your Iguazio instance and use Grafana Dashboards to view model monitoring
details. There are three dashboards available:

• Overview Dashboard

• Details Dashboard

• Performance Dashboard

Model endpoints overview dashboard

The Overview dashboard displays the model endpoint IDs of a specific project. Only deployed models with Model
Monitoring enabled are displayed. Endpoint IDs are URIs used to provide access to performance data and drift detection
statistics of a deployed model.
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The Overview pane provides details about the performance of all the deployed and monitored models within a project.
You can change projects by choosing a new project from the Project dropdown. The Overview dashboard displays the
number of endpoints in the project, the average predictions per second (using a 5-minute rolling average), the average
latency (using a 1-hour rolling average), and the total error count in the project.

Additional details include:

• Endpoint ID — the ID of the deployed model. Use this link to drill down to the model performance and details
panes.

• Function — the MLRun function to access the model

• Model — user defined name for the model

• Model Class — the implementation class that is used by the endpoint

• First Request — first request for production data

• Last Request — most recent request for production data

• Error Count — includes prediction process errors such as operational issues (for example, a function in a failed
state), as well as data processing errors (for example, invalid timestamps, request ids, type mismatches etc.)

• Accuracy — a numeric value representing the accuracy of model predictions (N/A)

• Drift Status — no drift (green), possible drift (yellow), drift detected (red)

At the bottom of the dashboard are heat maps for the Predictions per second, Average Latency and Errors. The heat
maps display data based on 15 minute intervals. See How to Read a Heat Map for more details.

Click an endpoint ID to drill down the performance details of that model.
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How to read a heat map

Heat maps are used to analyze trends and to instantly transform and enhance data through visualizations. This helps to
quickly identify areas of interest, and empower users to explore the data in order to pinpoint where there may be potential
issues. A heat map uses a matrix layout with colour and shading to show the relationship between two categories of
values (x and y axes), so the darker the cell, the higher the value. The values presented along each axis correspond
to a cell which is color-coded to represent the relationship between the two categories. The Predictions per second
heatmap shows the relationship between time, and the predictions per second, and the Average Latency per hour shows
the relationship between time and the latency.

To properly read the heap maps, follow the hierarchy of shades from the darkest (the highest values) to the lightest
shades (the lowest values).

Note: The exact quantitative values represented by the colors may be difficult to determine. Use the Performance
Dashboard to see detailed results.

Model endpoint details dashboard

The model endpoint details dashboard displays the real time performance data of the selected model in detail. Model
performance data provided is rich and is used to fine tune or diagnose potential performance issues that may affect
business goals. The data in this dashboard changes based on the selection of the project and model.

This dashboard has three panes:

1. Project and model summary

2. Analysis panes

1. Overall drift analysis

2. Features analysis

3. Incoming features graph
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Project and model summary

Use the dropdown to change the project and model. The dashboard presents the following information about the project:

• Endpoint ID — the ID of the deployed model

• Model — user defined name for the model

• Function URI — the MLRun function to access the model

• Model Class — the implementation class that is used by the endpoint

• Prediction/s — the average number of predictions per second over a rolling 5-minute period

• Average Latency — the average latency over a rolling 1-hour period

• First Request — first request for production data

• Last Request — most recent request for production data

Use the Performance and Overview buttons view those dashboards.

Analysis panes

This pane has two sections: Overall Drift Analysis and Features Analysis. The Overall Drift Analysis pane provides
performance statistics for the currently selected model.

• TVD (sum and mean)

• Hellinger (sum and mean)

• KLD (sum and mean)

The Features Analysis pane provides details of the drift analysis for each feature in the selected model. This pane
includes five types of statistics:

• Actual (min, mean and max) — results based on actual live data stream

• Expected (min, mean and max) — results based on training data

• TVD

• Hellinger

• KLD

Incoming features graph

This graph displays the performance of the features that are in the selected model based on sampled data points from
actual feature production data. The graph displays the values of the features in the model over time.
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Model endpoint performance dashboard

Model endpoint performance displays performance details in graphical format.

This dashboard has five graphs:

• Drift Measures — the overall drift over time for each of the endpoints in the selected model

• Average Latency — the average latency of the model in 5 minute intervals, for 5 minutes and 1 hour rolling
windows

• Predictions/s — the model predictions per second displayed in 5 second intervals for 5 minutes (rolling)

• Predictions Count — the number of predictions the model makes for 5 minutes and 1 hour rolling windows

Configuring Grafana dashboards

Verify that you have a Grafana service running in your Iguazio MLOps Platform. If you do not have a Grafana service
running, see Adding Grafana Dashboards to create and configure it. When you create the service: In the Custom
Parameters tab, Platform data-access user parameter, select a user with access to the /user/pipelines directory.

For working with Iguazio 3.0.x:

1. Make sure you have the model-monitoring as a Grafana data source configured in your Grafana service. If
not, add it by:

1. Open your grafana service.

2. Navigate to Configuration | Data Sources.

3. Press Add data source.

4. Select the SimpleJson datasource and configure the following parameters.

URL: http://mlrun-api:8080/api/grafana-proxy/model-endpoints
Access: Server (default)

(continues on next page)
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(continued from previous page)

## Add a custom header of:
X-V3io-Session-Key: <YOUR ACCESS KEY>

5. Press Save & Test for verification. You’ll receive a confirmation with either a success or a failure message.

2. Download the following monitoring dashboards:

• Model Monitoring - Overview

• Model Monitoring - Details

• Model Monitoring - Performance

3. Import the downloaded dashboards to your Grafana service:

1. Navigate to your Grafana service in the Services list and press it.

2. Press the dashboards icon in left menu.

3. In the Dashboard Management screen, press IMPORT, and select one file to import. Repeat this step for
each dashboard.

For working with Iguazio 3.2.x and later: Add access keys to your model-monitoring data source:

1. Open your Grafana service.

2. Navigate to Configuration | Data Sources.

3. Press mlrun-model-monitoring.

4. In Custom HTTP Headers, configure the cookie parameter. Set the value to:

`cookie: session=j:{"sid": "<YOUR ACCESS KEY>"}`

The overview, details, and performance dashboards are in Dashboards | Manage | private

Note: You need to train and deploy a model to see results in the dashboards. The dashboards immediately display
data if you already have a model trained and running with production data.

38.2 Enable model monitoring (beta)

To see tracking results, model monitoring needs to be enabled in each model.

To enable model monitoring, include serving_fn.set_tracking() in the model server.

To utilize drift measurement, supply the train set in the training step.

In this section

• Model monitoring demo

– Deploy model servers

– Simulating requests
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38.2.1 Model monitoring demo

Use the following code blocks to test and explore model monitoring.

# Set project name
project_name = "demo-project"

Deploy model servers

Use the following code to deploy a model server in the Iguazio instance.

import os
import pandas as pd
from sklearn.datasets import load_iris

from mlrun import import_function, get_dataitem, get_or_create_project
from mlrun.platforms import auto_mount

project = get_or_create_project(project_name, context="./")
project.set_model_monitoring_credentials(os.environ.get("V3IO_ACCESS_KEY"))

# Download the pre-trained Iris model
get_dataitem("https://s3.wasabisys.com/iguazio/models/iris/model.pkl").download("model.
→˓pkl")

iris = load_iris()
train_set = pd.DataFrame(iris['data'],

columns=['sepal_length_cm', 'sepal_width_cm',
'petal_length_cm', 'petal_width_cm'])

# Import the serving function from the function hub
serving_fn = import_function('hub://v2_model_server', project=project_name).apply(auto_
→˓mount())

model_name = "RandomForestClassifier"

# Log the model through the projects API so that it is available through the feature␣
→˓store API
project.log_model(model_name, model_file="model.pkl", training_set=train_set)

# Add the model to the serving function's routing spec
serving_fn.add_model(model_name, model_path=f"store://models/{project_name}/{model_name}
→˓:latest")

# Enable model monitoring
serving_fn.set_tracking()

# Deploy the function
serving_fn.deploy()
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Simulating requests

Use the following code to simulate production data.

import json
from time import sleep
from random import choice, uniform

iris_data = iris['data'].tolist()

while True:
data_point = choice(iris_data)
serving_fn.invoke(f'v2/models/{model_name}/infer', json.dumps({'inputs': [data_

→˓point]}))
sleep(uniform(0.2, 1.7))

368 Chapter 38. Model monitoring (beta)



CHAPTER

THIRTYNINE

WORKFLOWS

A workflow is a definition of execution of functions. It defines the order of execution of multiple dependent steps in a
directed acyclic graph (DAG). A workflow can reference the project’s params, secrets, artifacts, etc. It can also use a
function execution output as a function execution input (which, of course, defines the order of execution).

MLRun supports running workflows on a local or kubeflow pipeline engine. The local engine runs the workflow
as a local process, which is simpler for debugging and running simple/sequential tasks. The kubeflow (“kfp”) engine
runs as a task over the cluster and supports more advanced operations (conditions, branches, etc.). You can select the
engine at runtime. Kubeflow-specific directives like conditions and branches are not supported by the local engine.

Workflows are saved/registered in the project using the set_workflow().
Workflows are executed using the run() method or using the CLI command mlrun project.

Refer to the Tutorials and examples for complete examples.

In this section

• Composing workflows

• Saving workflows

• Running workflows

39.1 Composing workflows

Workflows are written as python functions that make use of function operations (run, build, deploy) and can access
project parameters, secrets, and artifacts using get_param(), get_secret() and get_artifact_uri().

For workflows to work in Kubeflow you need to add a decorator (@dsl.pipeline(..)) as shown below.

Example workflow:

from kfp import dsl
import mlrun
from mlrun.model import HyperParamOptions

funcs = {}
DATASET = "iris_dataset"

in_kfp = True

@dsl.pipeline(name="Demo training pipeline", description="Shows how to use mlrun.")
def newpipe():

(continues on next page)
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project = mlrun.get_current_project()

# build our ingestion function (container image)
builder = mlrun.build_function("gen-iris")

# run the ingestion function with the new image and params
ingest = mlrun.run_function(

"gen-iris",
name="get-data",
params={"format": "pq"},
outputs=[DATASET],

).after(builder)

# train with hyper-parameters
train = mlrun.run_function(

"train",
name="train",
params={"sample": -1, "label_column": project.get_param("label", "label"), "test_

→˓size": 0.10},
hyperparams={

"model_pkg_class": [
"sklearn.ensemble.RandomForestClassifier",
"sklearn.linear_model.LogisticRegression",
"sklearn.ensemble.AdaBoostClassifier",

]
},
hyper_param_options=HyperParamOptions(selector="max.accuracy"),
inputs={"dataset": ingest.outputs[DATASET]},
outputs=["model", "test_set"],

)
print(train.outputs)

# test and visualize our model
mlrun.run_function(

"test",
name="test",
params={"label_column": project.get_param("label", "label")},
inputs={

"models_path": train.outputs["model"],
"test_set": train.outputs["test_set"],

},
)

# deploy our model as a serverless function, we can pass a list of models to serve
serving = mlrun.import_function("hub://v2_model_server", new_name="serving")
deploy = mlrun.deploy_function(

serving,
models=[{"key": f"{DATASET}:v1", "model_path": train.outputs["model"]}],

)

# test out new model server (via REST API calls), use imported function

(continues on next page)
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tester = mlrun.import_function("hub://v2_model_tester", new_name="live_tester")
mlrun.run_function(

tester,
name="model-tester",
params={"addr": deploy.outputs["endpoint"], "model": f"{DATASET}:v1"},
inputs={"table": train.outputs["test_set"]},

)

39.2 Saving workflows

If you want to use workflows as part of an automated flow, save them and register them in the project. Use the
set_workflow() method to register workflows, to specify a workflow name, the path to the workflow file, and the
function handler name (or it looks for a handler named “pipeline”), and can set the default engine (local or kfp).

When setting the embed flag to True, the workflow code is embedded in the project file (can be used if you want to
describe the entire project using a single YAML file).

You can define the schema for workflow arguments (data type, default, doc, etc.) by setting the args_schema with a
list of EntrypointParam objects.

Example:

# define agrument for the workflow
arg = mlrun.model.EntrypointParam(

"model_pkg_class",
type="str",
default="sklearn.linear_model.LogisticRegression",
doc="model package/algorithm",

)

# register the workflow in the project and save the project
project.set_workflow("main", "./myflow.py", handler="newpipe", args_schema=[arg])
project.save()

# run the workflow
project.run("main", arguments={"model_pkg_class": "sklearn.ensemble.

→˓RandomForestClassifier"})

39.3 Running workflows

Use the run() method to execute workflows. Specify the workflow using its name or workflow_path (path to the
workflow file) or workflow_handler (the workflow function handler). You can specify the input arguments for the
workflow and can override the system default artifact_path.

Workflows are asynchronous by default. You can set the watch flag to True and the run operation blocks until comple-
tion and prints out the workflow progress. Alternatively, you can use .wait_for_completion() on the run object.

The default workflow engine is kfp. You can override it by specifying the engine in the run() or set_workflow()
methods. Using the local engine executes the workflow state machine locally (its functions still run as cluster jobs).
If you set the local flag to True, the workflow uses the local engine AND the functions run as local process. This
mode is used for local debugging of workflows.
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When running workflows from a git enabled context it first verifies that there are no uncommitted git changes (to
guarantee that workflows that load from git do not use old code versions). You can suppress that check by setting the
dirty flag to True.

Examples:

# simple run of workflow 'main' with arguments, block until it completes (watch=True)
run = project.run("main", arguments={"param1": 6}, watch=True)

# run workflow specified with a function handler (my_pipe)
run = project.run(workflow_handler=my_pipe)
# wait for pipeline completion
run.wait_for_completion()

# run workflow in local debug mode
run = project.run(workflow_handler=my_pipe, local=True, arguments={"param1": 6})

39.3.1 Notification

Instead of waiting for completion, you can set up a notification in Slack with a results summary, similar to:

Use one of:

# If you want to get slack notification after the run with the results summary, use
# project.notifiers.slack(webhook="https://<webhook>")

or in a Jupyter notebook with the %env magic command:

%env SLACK_WEBHOOK=<slack webhook url>
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API BY MODULE

MLRun is organized into the following modules. The most common functions are exposed in the mlrun module, which
is the recommended starting point.

41.1 mlrun.frameworks

MLRun is providing a quick and easy integration into your code with mlrun.frameworks: a collection of sub-modules
for the most commonly used machine and deep learning frameworks, providing features such as automatic logging,
model management, and distributed training.

41.1.1 mlrun.frameworks.auto_mlrun

class mlrun.frameworks.auto_mlrun.auto_mlrun.AutoMLRun

Bases: object

A library of automatic functions for managing models using MLRun’s frameworks package.

static apply_mlrun(model: Optional[mlrun.frameworks._common.utils.ModelType] = None,
model_name: Optional[str] = None, tag: str = '', model_path: Optional[str] = None,
modules_map: Optional[Union[Dict[str, Union[None, str, List[str]]], str]] = None,
custom_objects_map: Optional[Union[Dict[str, Union[str, List[str]]], str]] = None,
custom_objects_directory: Optional[str] = None, context:
Optional[mlrun.execution.MLClientCtx] = None, framework: Optional[str] = None,
auto_log: bool = True, **kwargs)→
mlrun.frameworks._common.model_handler.ModelHandler

Use MLRun’s ‘apply_mlrun’ of the detected given model’s framework to wrap the framework relevant
methods and gain the framework’s features in MLRun. A ModelHandler initialized with the model will be
returned.

Parameters

• model – The model to wrap. Can be loaded from the model path given as well.

• model_name – The model name to use for storing the model artifact. If not given will have
a default name according to the framework.

• tag – The model’s tag to log with.

• model_path – The model’s store object path. Mandatory for evaluation (to know which
model to update). If model is not provided, it will be loaded from this path.
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• modules_map – A dictionary of all the modules required for loading the model. Each key
is a path to a module and its value is the object name to import from it. All the modules
will be imported globally. If multiple objects needed to be imported from the same module
a list can be given. The map can be passed as a path to a json file as well. For example:

{
"module1": None, # import module1
"module2": ["func1", "func2"], # from module2 import func1,␣

→˓func2
"module3.sub_module": "func3", # from module3.sub_module␣

→˓import func3
}

If the model path given is of a store object, the modules map will be read from the logged
modules map artifact of the model.

• custom_objects_map – A dictionary of all the custom objects required for loading the
model. Each key is a path to a python file and its value is the custom object name to import
from it. If multiple objects needed to be imported from the same py file a list can be given.
The map can be passed as a path to a json file as well. For example:

{
"/.../custom_model.py": "MyModel",
"/.../custom_objects.py": ["object1", "object2"]

}

All the paths will be accessed from the given ‘custom_objects_directory’, meaning each
py file will be read from ‘custom_objects_directory/<MAP VALUE>’. If the model path
given is of a store object, the custom objects map will be read from the logged custom
object map artifact of the model. Notice: The custom objects will be imported in the order
they came in this dictionary (or json). If a custom object is depended on another, make
sure to put it below the one it relies on.

• custom_objects_directory – Path to the directory with all the python files required for
the custom objects. Can be passed as a zip file as well (will be extracted during the run
before loading the model). If the model path given is of a store object, the custom objects
files will be read from the logged custom object artifact of the model.

• context – A MLRun context.

• auto_log – Whether to enable auto-logging capabilities of MLRun or not. Auto logging
will add default artifacts and metrics besides the one you can pass here.

• framework – The model’s framework. If None, AutoMLRun will try to figure out the
framework. From the provided model or model path. Defaulted to None.

• kwargs – Additional parameters for the specific framework’s ‘apply_mlrun’ function like
metrics, callbacks and more (read the docs of the required framework to know more).

Returns The framework’s model handler initialized with the given model.

static load_model(model_path: str, model_name: Optional[str] = None, context:
Optional[mlrun.execution.MLClientCtx] = None, modules_map:
Optional[Union[Dict[str, Union[None, str, List[str]]], str]] = None,
custom_objects_map: Optional[Union[Dict[str, Union[str, List[str]]], str]] = None,
custom_objects_directory: Optional[str] = None, framework: Optional[str] = None,
**kwargs)→ mlrun.frameworks._common.model_handler.ModelHandler

Load a model using MLRun’s ModelHandler. The loaded model can be accessed from the model handler
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returned via model_handler.model. If the model is a store object uri (it is logged in MLRun) then the
framework will be read automatically, otherwise (for local path and urls) it must be given. The other
parameters will be automatically read in case its a logged model in MLRun.

Parameters

• model_path – A store object path of a logged model object in MLRun.

• model_name – The model name to use for storing the model artifact. If not given will have
a default name according to the framework.

• modules_map – A dictionary of all the modules required for loading the model. Each key
is a path to a module and its value is the object name to import from it. All the modules
will be imported globally. If multiple objects needed to be imported from the same module
a list can be given. The map can be passed as a path to a json file as well. For example:

{
"module1": None, # import module1
"module2": ["func1", "func2"], # from module2 import func1,␣

→˓func2
"module3.sub_module": "func3", # from module3.sub_module␣

→˓import func3
}

If the model path given is of a store object, the modules map will be read from the logged
modules map artifact of the model.

• custom_objects_map – A dictionary of all the custom objects required for loading the
model. Each key is a path to a python file and its value is the custom object name to import
from it. If multiple objects needed to be imported from the same py file a list can be given.
The map can be passed as a path to a json file as well. For example:

{
"/.../custom_model.py": "MyModel",
"/.../custom_objects.py": ["object1", "object2"]

}

All the paths will be accessed from the given ‘custom_objects_directory’, meaning each
py file will be read from ‘custom_objects_directory/<MAP VALUE>’. If the model path
given is of a store object, the custom objects map will be read from the logged custom
object map artifact of the model. Notice: The custom objects will be imported in the order
they came in this dictionary (or json). If a custom object is depended on another, make
sure to put it below the one it relies on.

• custom_objects_directory – Path to the directory with all the python files required for
the custom objects. Can be passed as a zip file as well (will be extracted during the run
before loading the model). If the model path given is of a store object, the custom objects
files will be read from the logged custom object artifact of the model.

• context – A MLRun context.

• framework – The model’s framework. It must be provided for local paths or urls. If None,
AutoMLRun will assume the model path is of a store uri model artifact and try to get the
framework from it. Defaulted to None.

• kwargs – Additional parameters for the specific framework’s ModelHandler class.

Returns The model inside a MLRun model handler.

Raises MLRunInvalidArgumentError – In case the framework is incorrect or missing.

41.1. mlrun.frameworks 377



mlrun, Release UNKNOWN

mlrun.frameworks.auto_mlrun.auto_mlrun.framework_to_apply_mlrun(framework: str)→ Callable[[...],
mlrun.frameworks._common.model_handler.ModelHandler]

Get the ‘apply_mlrun’ shortcut function of the given framework’s name.

Parameters framework – The framework’s name.

Returns The framework’s ‘apply_mlrun’ shortcut function.

Raises MLRunInvalidArgumentError – If the given framework is not supported by AutoMLRun
or if it does not have an ‘apply_mlrun’ yet.

mlrun.frameworks.auto_mlrun.auto_mlrun.framework_to_model_handler(framework: str)→
Type[mlrun.frameworks._common.model_handler.ModelHandler]

Get the ModelHandler class of the given framework’s name.

Parameters framework – The framework’s name.

Returns The framework’s ModelHandler class.

Raises MLRunInvalidArgumentError – If the given framework is not supported by AutoMLRun.

mlrun.frameworks.auto_mlrun.auto_mlrun.get_framework_by_class_name(model: ml-
run.frameworks._common.utils.ModelType)
→ str

Get the framework name of the given model by its class name.

Parameters model – The model to get its framework.

Returns The model’s framework.

Raises MLRunInvalidArgumentError – If the given model’s class name is not supported by Au-
toMLRun or not recognized.

mlrun.frameworks.auto_mlrun.auto_mlrun.get_framework_by_instance(model: ml-
run.frameworks._common.utils.ModelType)
→ str

Get the framework name of the given model by its instance.

Parameters model – The model to get his framework.

Returns The model’s framework.

Raises MLRunInvalidArgumentError – If the given model type is not supported by AutoMLRun
or not recognized.

41.1.2 mlrun.frameworks.tf_keras

41.1.3 mlrun.frameworks.pytorch

41.1.4 mlrun.frameworks.sklearn

41.1.5 mlrun.frameworks.xgboost

41.1.6 mlrun.frameworks.lgbm

41.2 mlrun
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class mlrun.ArtifactType(value)
Possible artifact types to log using the MLRun context decorator.

mlrun.code_to_function(name: str = '', project: str = '', tag: str = '', filename: str = '', handler: str = '', kind:
str = '', image: Optional[str] = None, code_output: str = '', embed_code: bool = True,
description: str = '', requirements: Optional[Union[str, List[str]]] = None, categories:
Optional[List[str]] = None, labels: Optional[Dict[str, str]] = None, with_doc: bool =
True, ignored_tags=None)→
Union[mlrun.runtimes.mpijob.v1alpha1.MpiRuntimeV1Alpha1,
mlrun.runtimes.mpijob.v1.MpiRuntimeV1, mlrun.runtimes.function.RemoteRuntime,
mlrun.runtimes.serving.ServingRuntime, mlrun.runtimes.daskjob.DaskCluster,
mlrun.runtimes.kubejob.KubejobRuntime, mlrun.runtimes.local.LocalRuntime,
mlrun.runtimes.sparkjob.spark2job.Spark2Runtime,
mlrun.runtimes.sparkjob.spark3job.Spark3Runtime,
mlrun.runtimes.remotesparkjob.RemoteSparkRuntime]

Convenience function to insert code and configure an mlrun runtime.

Easiest way to construct a runtime type object. Provides the most often used configuration options for all runtimes
as parameters.

Instantiated runtimes are considered ‘functions’ in mlrun, but they are anything from nuclio functions to generic
kubernetes pods to spark jobs. Functions are meant to be focused, and as such limited in scope and size. Typically
a function can be expressed in a single python module with added support from custom docker images and
commands for the environment. The returned runtime object can be further configured if more customization is
required.

One of the most important parameters is ‘kind’. This is what is used to specify the chosen runtimes. The options
are:

• local: execute a local python or shell script

• job: insert the code into a Kubernetes pod and execute it

• nuclio: insert the code into a real-time serverless nuclio function

• serving: insert code into orchestrated nuclio function(s) forming a DAG

• dask: run the specified python code / script as Dask Distributed job

• mpijob: run distributed Horovod jobs over the MPI job operator

• spark: run distributed Spark job using Spark Kubernetes Operator

• remote-spark: run distributed Spark job on remote Spark service

Learn more about function runtimes here: https://docs.mlrun.org/en/latest/runtimes/functions.html#
function-runtimes

Parameters

• name – function name, typically best to use hyphen-case

• project – project used to namespace the function, defaults to ‘default’

• tag – function tag to track multiple versions of the same function, defaults to ‘latest’

• filename – path to .py/.ipynb file, defaults to current jupyter notebook

• handler – The default function handler to call for the job or nuclio function, in batch func-
tions (job, mpijob, ..) the handler can also be specified in the .run() command, when not
specified the entire file will be executed (as main). for nuclio functions the handler is in the
form of module:function, defaults to ‘main:handler’
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• kind – function runtime type string - nuclio, job, etc. (see docstring for all options)

• image – base docker image to use for building the function container, defaults to None

• code_output – specify ‘.’ to generate python module from the current jupyter notebook

• embed_code – indicates whether or not to inject the code directly into the function runtime
spec, defaults to True

• description – short function description, defaults to ‘’

• requirements – list of python packages or pip requirements file path, defaults to None

• categories – list of categories for mlrun function marketplace, defaults to None

• labels – immutable name/value pairs to tag the function with useful metadata, defaults to
None

• with_doc – indicates whether to document the function parameters, defaults to True

• ignored_tags – notebook cells to ignore when converting notebooks to py code (separated
by ‘;’)

Returns pre-configured function object from a mlrun runtime class

example:

import mlrun

# create job function object from notebook code and add doc/metadata
fn = mlrun.code_to_function("file_utils", kind="job",

handler="open_archive", image="mlrun/mlrun",
description = "this function opens a zip archive into a␣

→˓local/mounted folder",
categories = ["fileutils"],
labels = {"author": "me"})

example:

import mlrun
from pathlib import Path

# create file
Path("mover.py").touch()

# create nuclio function object from python module call mover.py
fn = mlrun.code_to_function("nuclio-mover", kind="nuclio",

filename="mover.py", image="python:3.7",
description = "this function moves files from one␣

→˓system to another",
requirements = ["pandas"],
labels = {"author": "me"})

mlrun.get_version()

get current mlrun version

mlrun.handler(labels: Optional[Dict[str, str]] = None, outputs: Optional[List[Optional[Union[Tuple[str,
mlrun.run.ArtifactType], Tuple[str, str], Tuple[str, mlrun.run.ArtifactType, Dict[str, Any]],
Tuple[str, str, Dict[str, Any]], str]]]] = None, inputs: Union[bool, Dict[str, Type]] = True)
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MLRun’s handler is a decorator to wrap a function and enable setting labels, automatic mlrun.DataItem parsing
and outputs logging.

Parameters

• labels – Labels to add to the run. Expecting a dictionary with the labels names as keys.
Default: None.

• outputs – Logging configurations for the function’s returned values. Expecting a list of
tuples and None values:

– str - A string in the format of ‘{key}:{artifact_type}’. If a string was given without ‘:’ it will
indicate the key and the artifact type will be defaulted according to the returned value
type.

– tuple - A tuple of:

∗ [0]: str - The key (name) of the artifact to use for the logged output.

∗ [1]: Union[ArtifactType, str] = “result” - An ArtifactType enum or an equivalent string,
that indicates how to log the returned value. The artifact types can be one of:

· DATASET = “dataset”

· DIRECTORY = “directory”

· FILE = “file”

· OBJECT = “object”

· PLOT = “plot”

· RESULT = “result”.

∗ [2]: Optional[Dict[str, Any]] - A keyword arguments dictionary with the properties to
pass to the relevant logging function (one of context.log_artifact, context.log_result,
context.log_dataset).

– None - Do not log the output.

The list length must be equal to the total amount of returned values from the function. Default
to None - meaning no outputs will be logged.

• inputs – Parsing configurations for the arguments passed as inputs via the run method of
an MLRun function. Can be passed as a boolean value or a dictionary:

– True - Parse all found inputs to the assigned type hint in the function’s signature. If there is no
type hint assigned, the value will remain an mlrun.DataItem.

– False - Do not parse inputs, leaving the inputs as mlrun.DataItem.

– Dict[str, Type] - A dictionary with argument name as key and the expected type to parse the
mlrun.DataItem to.

Defaulted to True.

Example:

import mlrun

@mlrun.handler(outputs=["my_array", None, "my_multiplier"])
def my_handler(array: np.ndarray, m: int):

array = array * m
(continues on next page)
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(continued from previous page)

m += 1
return array, "I won't be logged", m

>>> mlrun_function = mlrun.code_to_function("my_code.py", kind="job")
>>> run_object = mlrun_function.run(
... handler="my_handler",
... inputs={"array": "store://my_array_Artifact"},
... params={"m": 2}
... )
>>> run_object.outputs
{'my_multiplier': 3, 'my_array': 'store://...'}

mlrun.import_function(url='', secrets=None, db='', project=None, new_name=None)
Create function object from DB or local/remote YAML file

Function can be imported from function repositories (mlrun marketplace or local db), or be read from a remote
URL (http(s), s3, git, v3io, ..) containing the function YAML

special URLs:

function marketplace: hub://{name}[:{tag}]
local mlrun db: db://{project-name}/{name}[:{tag}]

examples:

function = mlrun.import_function("hub://sklearn_classifier")
function = mlrun.import_function("./func.yaml")
function = mlrun.import_function("https://raw.githubusercontent.com/org/repo/func.
→˓yaml")

Parameters

• url – path/url to marketplace, db or function YAML file

• secrets – optional, credentials dict for DB or URL (s3, v3io, . . . )

• db – optional, mlrun api/db path

• project – optional, target project for the function

• new_name – optional, override the imported function name

Returns function object

mlrun.set_environment(api_path: Optional[str] = None, artifact_path: str = '', project: str = '', access_key:
Optional[str] = None, user_project=False, username: Optional[str] = None)

set and test default config for: api path, artifact_path and project

this function will try and read the configuration from the environment/api and merge it with the user provided
project name, artifacts path or api path/access_key. it returns the configured artifacts path, this can be used to
define sub paths.

Note: the artifact path is an mlrun data uri (e.g. s3://bucket/path) and can not be used with file utils.

example:
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from os import path
project_name, artifact_path = set_environment(project='my-project')
set_environment("http://localhost:8080", artifact_path="./")
set_environment("<remote-service-url>", access_key="xyz", username="joe")

Parameters

• api_path – location/url of mlrun api service

• artifact_path – path/url for storing experiment artifacts

• project – default project name

• access_key – set the remote cluster access key (V3IO_ACCESS_KEY)

• user_project – add the current user name to the provided project name (making it
unique per user)

• username – name of the user to authenticate

Returns default project name actual artifact path/url, can be used to create subpaths per task or
group of artifacts

41.3 mlrun.artifacts

mlrun.artifacts.get_model(model_dir, suffix='')
return model file, model spec object, and list of extra data items

this function will get the model file, metadata, and extra data the returned model file is always local, when using
remote urls (such as v3io://, s3://, store://, ..) it will be copied locally.

returned extra data dict (of key, DataItem objects) allow reading additional model files/objects e.g. use
DataItem.get() or .download(target) .as_df() to read

example:

model_file, model_artifact, extra_data = get_model(models_path, suffix='.pkl')
model = load(open(model_file, "rb"))
categories = extra_data['categories'].as_df()

Parameters

• model_dir – model dir or artifact path (store://..) or DataItem

• suffix – model filename suffix (when using a dir)

Returns model filename, model artifact object, extra data dict

mlrun.artifacts.update_model(model_artifact, parameters: Optional[dict] = None, metrics: Optional[dict] =
None, extra_data: Optional[dict] = None, inputs:
Optional[List[mlrun.features.Feature]] = None, outputs:
Optional[List[mlrun.features.Feature]] = None, feature_vector: Optional[str]
= None, feature_weights: Optional[list] = None, key_prefix: str = '', labels:
Optional[dict] = None, write_spec_copy=True, store_object: bool = True)

Update model object attributes

this method will edit or add attributes to a model object
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example:

update_model(model_path, metrics={'speed': 100},
extra_data={'my_data': b'some text', 'file': 's3://mybucket/..'})

Parameters

• model_artifact – model artifact object or path (store://..) or DataItem

• parameters – parameters dict

• metrics – model metrics e.g. accuracy

• extra_data – extra data items key, value dict (value can be: path string | bytes | artifact)

• inputs – list of input features (feature vector schema)

• outputs – list of output features (output vector schema)

• feature_vector – feature store feature vector uri (store://feature-
vectors/<project>/<name>[:tag])

• feature_weights – list of feature weights, one per input column

• key_prefix – key prefix to add to metrics and extra data items

• labels – metadata labels

• write_spec_copy – write a YAML copy of the spec to the target dir

• store_object – Whether to store the model artifact updated.

41.4 mlrun.config

Configuration system.

Configuration can be in either a configuration file specified by MLRUN_CONFIG_FILE environment variable or by
environment variables.

Environment variables are in the format “MLRUN_httpdb__port=8080”. This will be mapped to config.httpdb.port.
Values should be in JSON format.

class mlrun.config.Config(cfg=None)
Bases: object

property dask_kfp_image

See kfp_image property docstring for why we’re defining this property

property dbpath

static decode_base64_config_and_load_to_object(attribute_path: str, expected_type=<class
'dict'>)

decodes and loads the config attribute to expected type :param attribute_path: the path in the default_config
e.g. preemptible_nodes.node_selector :param expected_type: the object type valid values are : dict, list
etc. . . :return: the expected type instance

dump_yaml(stream=None)

classmethod from_dict(dict_)
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static get_build_args()

get_default_function_node_selector()→ dict

static get_default_function_pod_requirement_resources(requirement: str, with_gpu: bool =
True)

Parameters

• requirement – kubernetes requirement resource one of the following : requests, lim-
its

• with_gpu – whether to return requirement resources with nvidia.com/gpu field (e.g.
you cannot specify GPU requests without specifying GPU limits) https://kubernetes.
io/docs/tasks/manage-gpus/scheduling-gpus/

Returns a dict containing the defaults resources (cpu, memory, nvidia.com/gpu)

get_default_function_pod_resources(with_gpu_requests=False, with_gpu_limits=False)

get_default_function_security_context()→ dict

static get_hub_url()

static get_parsed_igz_version()→ Optional[semver.VersionInfo]

get_preemptible_node_selector()→ dict

get_preemptible_tolerations()→ list

static get_security_context_enrichment_group_id(user_unix_id: int)→ int

static get_storage_auto_mount_params()

static get_valid_function_priority_class_names()

property iguazio_api_url

we want to be able to run with old versions of the service who runs the API (which doesn’t configure this
value) so we’re doing best effort to try and resolve it from other configurations TODO: Remove this hack
when 0.6.x is old enough

is_api_running_on_k8s()

static is_pip_ca_configured()

is_preemption_nodes_configured()

static is_running_on_iguazio()→ bool

property kfp_image

When this configuration is not set we want to set it to mlrun/mlrun, but we need to use the enrich_image
method. The problem is that the mlrun.utils.helpers module is importing the config (this) module, so we
must import the module inside this function (and not on initialization), and then calculate this property
value here.

static reload()

resolve_chief_api_url()→ str

resolve_kfp_url(namespace=None)
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resolve_runs_monitoring_missing_runtime_resources_debouncing_interval()

static resolve_ui_url()

to_dict()

update(cfg)

verify_security_context_enrichment_mode_is_allowed()

property version

mlrun.config.read_env(env=None, prefix='MLRUN_')
Read configuration from environment

41.5 mlrun.datastore

class mlrun.datastore.BigQuerySource(name: str = '', table: Optional[str] = None, max_results_for_table:
Optional[int] = None, query: Optional[str] = None,
materialization_dataset: Optional[str] = None, chunksize:
Optional[int] = None, key_field: Optional[str] = None, time_field:
Optional[str] = None, schedule: Optional[str] = None,
start_time=None, end_time=None, gcp_project: Optional[str] =
None, spark_options: Optional[dict] = None)

Bases: mlrun.datastore.sources.BaseSourceDriver

Reads Google BigQuery query results as input source for a flow.

example:

# use sql query
query_string = "SELECT * FROM `the-psf.pypi.downloads20210328` LIMIT 5000"
source = BigQuerySource("bq1", query=query_string,

gcp_project="my_project",
materialization_dataset="dataviews")

# read a table
source = BigQuerySource("bq2", table="the-psf.pypi.downloads20210328", gcp_project=
→˓"my_project")

Parameters

• name – source name

• table – table name/path, cannot be used together with query

• query – sql query string

• materialization_dataset – for query with spark, The target dataset for the material-
ized view. This dataset should be in same location as the view or the queried tables. must
be set to a dataset where the GCP user has table creation permission

• chunksize – number of rows per chunk (default large single chunk)

• key_field – the column to be used as the key for events. Can be a list of keys.

• time_field – the column to be parsed as the timestamp for events. Defaults to None
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• schedule – string to configure scheduling of the ingestion job. For example ‘*/30 * * *
*’ will cause the job to run every 30 minutes

• start_time – filters out data before this time

• end_time – filters out data after this time

• gcp_project – google cloud project name

• spark_options – additional spart read options

is_iterator()

kind = 'bigquery'

support_spark = True

support_storey = False

to_dataframe()

to_spark_df(session, named_view=False)

class mlrun.datastore.CSVSource(name: str = '', path: Optional[str] = None, attributes: Optional[Dict[str,
str]] = None, key_field: Optional[str] = None, time_field: Optional[str] =
None, schedule: Optional[str] = None, parse_dates:
Optional[Union[List[int], List[str]]] = None)

Bases: mlrun.datastore.sources.BaseSourceDriver

Reads CSV file as input source for a flow.

Parameters

• name – name of the source

• path – path to CSV file

• key_field – the CSV field to be used as the key for events. May be an int (field index)
or string (field name) if with_header is True. Defaults to None (no key). Can be a list of
keys.

• time_field – the CSV field to be parsed as the timestamp for events. May be an
int (field index) or string (field name) if with_header is True. Defaults to None (no
timestamp field). The field will be parsed from isoformat (ISO-8601 as defined in date-
time.fromisoformat()). In case the format is not isoformat, timestamp_format (as defined
in datetime.strptime()) should be passed in attributes.

• schedule – string to configure scheduling of the ingestion job.

• attributes – additional parameters to pass to storey. For example: at-
tributes={“timestamp_format”: ‘%Y%m%d%H’}

• parse_dates – Optional. List of columns (names or integers, other than time_field) that
will be attempted to parse as date column.

get_spark_options()

is_iterator()

kind = 'csv'

support_spark = True
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support_storey = True

to_dataframe()

to_spark_df(session, named_view=False)

to_step(key_field=None, time_field=None, context=None)

class mlrun.datastore.CSVTarget(name: str = '', path=None, attributes: Optional[Dict[str, str]] = None,
after_step=None, columns=None, partitioned: bool = False,
key_bucketing_number: Optional[int] = None, partition_cols:
Optional[List[str]] = None, time_partitioning_granularity: Optional[str]
= None, after_state=None, max_events: Optional[int] = None,
flush_after_seconds: Optional[int] = None, storage_options:
Optional[Dict[str, str]] = None)

Bases: mlrun.datastore.targets.BaseStoreTarget

add_writer_state(graph, after, features, key_columns=None, timestamp_key=None)

add_writer_step(graph, after, features, key_columns=None, timestamp_key=None,
featureset_status=None)

as_df(columns=None, df_module=None, entities=None, start_time=None, end_time=None,
time_column=None, **kwargs)

return the target data as dataframe

get_spark_options(key_column=None, timestamp_key=None, overwrite=True)

is_offline = True

is_single_file()

kind: str = 'csv'

prepare_spark_df(df )

suffix = '.csv'

support_spark = True

support_storey = True

class mlrun.datastore.DataItem(key: str, store: mlrun.datastore.base.DataStore, subpath: str, url: str = '',
meta=None, artifact_url=None)

Bases: object

Data input/output class abstracting access to various local/remote data sources

DataItem objects are passed into functions and can be used inside the function, when a function run completes
users can access the run data via the run.artifact(key) which returns a DataItem object. users can also convert a
data url (e.g. s3://bucket/key.csv) to a DataItem using mlrun.get_dataitem(url).

Example:

# using data item inside a function
def my_func(context, data: DataItem):

df = data.as_df()

(continues on next page)
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(continued from previous page)

# reading run results using DataItem (run.artifact())
train_run = train_iris_func.run(inputs={'dataset': dataset},

params={'label_column': 'label'})

train_run.artifact('confusion-matrix').show()
test_set = train_run.artifact('test_set').as_df()

# create and use DataItem from uri
data = mlrun.get_dataitem('http://xyz/data.json').get()

property artifact_url

DataItem artifact url (when its an artifact) or url for simple dataitems

as_df(columns=None, df_module=None, format='', **kwargs)
return a dataframe object (generated from the dataitem).

Parameters

• columns – optional, list of columns to select

• df_module – optional, py module used to create the DataFrame (e.g. pd, dd, cudf, ..)

• format – file format, if not specified it will be deducted from the suffix

delete()

delete the object from the datastore

download(target_path)
download to the target dir/path

Parameters target_path – local target path for the downloaded item

get(size=None, offset=0, encoding=None)
read all or a byte range and return the content

Parameters

• size – number of bytes to get

• offset – fetch from offset (in bytes)

• encoding – encoding (e.g. “utf-8”) for converting bytes to str

property key

DataItem key

property kind

DataItem store kind (file, s3, v3io, ..)

listdir()

return a list of child file names

local()

get the local path of the file, download to tmp first if its a remote object

ls()

return a list of child file names
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property meta

Artifact Metadata, when the DataItem is read from the artifacts store

open(mode)
return fsspec file handler, if supported

put(data, append=False)
write/upload the data, append is only supported by some datastores

Parameters

• data – data (bytes/str) to write

• append – append data to the end of the object, NOT SUPPORTED BY SOME OB-
JECT STORES!

show(format=None)
show the data object content in Jupyter

Parameters format – format to use (when there is no/wrong suffix), e.g. ‘png’

stat()

return FileStats class (size, modified, content_type)

property store

DataItem store object

property suffix

DataItem suffix (file extension) e.g. ‘.png’

upload(src_path)
upload the source file (src_path)

Parameters src_path – source file path to read from and upload

property url

//bucket/path

Type DataItem url e.g. /dir/path, s3

class mlrun.datastore.HttpSource(name: Optional[str] = None, path: Optional[str] = None, attributes:
Optional[Dict[str, str]] = None, key_field: Optional[str] = None,
time_field: Optional[str] = None, workers: Optional[int] = None)

Bases: mlrun.datastore.sources.OnlineSource

add_nuclio_trigger(function)

kind = 'http'

class mlrun.datastore.KafkaSource(brokers='localhost:9092', topics='topic', group='serving',
initial_offset='earliest', partitions=None, sasl_user=None,
sasl_pass=None, **kwargs)

Bases: mlrun.datastore.sources.OnlineSource

Sets kafka source for the flow

Sets kafka source for the flow

Parameters

• brokers – list of broker IP addresses
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• topics – list of topic names on which to listen.

• group – consumer group. Default “serving”

• initial_offset – from where to consume the stream. Default earliest

• partitions – Optional, A list of partitions numbers for which the function receives
events.

• sasl_user – Optional, user name to use for sasl authentications

• sasl_pass – Optional, password to use for sasl authentications

add_nuclio_trigger(function)

kind = 'kafka'

class mlrun.datastore.NoSqlTarget(*args, **kwargs)
Bases: mlrun.datastore.targets.NoSqlBaseTarget

get_table_object()

get storey Table object

kind: str = 'nosql'

support_spark = True

writer_step_name = 'NoSqlTarget'

class mlrun.datastore.ParquetSource(name: str = '', path: Optional[str] = None, attributes:
Optional[Dict[str, str]] = None, key_field: Optional[str] = None,
time_field: Optional[str] = None, schedule: Optional[str] = None,
start_time: Optional[Union[datetime.datetime, str]] = None,
end_time: Optional[Union[datetime.datetime, str]] = None)

Bases: mlrun.datastore.sources.BaseSourceDriver

Reads Parquet file/dir as input source for a flow.

Parameters

• name – name of the source

• path – path to Parquet file or directory

• key_field – the column to be used as the key for events. Can be a list of keys.

• time_field – the column to be parsed as the timestamp for events. Defaults to None

• start_filter – datetime. If not None, the results will be filtered by partitions and
‘filter_column’ > start_filter. Default is None

• end_filter – datetime. If not None, the results will be filtered by partitions ‘fil-
ter_column’ <= end_filter. Default is None

• filter_column – Optional. if not None, the results will be filtered by this column and
start_filter & end_filter

• schedule – string to configure scheduling of the ingestion job. For example ‘*/30 * * *
*’ will cause the job to run every 30 minutes

• start_time – filters out data before this time

• end_time – filters out data after this time

• attributes – additional parameters to pass to storey.
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property end_time

get_spark_options()

kind = 'parquet'

property start_time

support_spark = True

support_storey = True

to_dataframe()

to_step(key_field=None, time_field=None, start_time=None, end_time=None, context=None)

class mlrun.datastore.ParquetTarget(name: str = '', path=None, attributes: Optional[Dict[str, str]] =
None, after_step=None, columns=None, partitioned: Optional[bool]
= None, key_bucketing_number: Optional[int] = None,
partition_cols: Optional[List[str]] = None,
time_partitioning_granularity: Optional[str] = None,
after_state=None, max_events: Optional[int] = 10000,
flush_after_seconds: Optional[int] = 900, storage_options:
Optional[Dict[str, str]] = None)

Bases: mlrun.datastore.targets.BaseStoreTarget

parquet target storage driver, used to materialize feature set/vector data into parquet files

Parameters

• name – optional, target name. By default will be called ParquetTarget

• path – optional, Output path. Can be either a file or directory. This pa-
rameter is forwarded as-is to pandas.DataFrame.to_parquet(). Default location
v3io:///projects/{project}/FeatureStore/{name}/parquet/

• attributes – optional, extra attributes for storey.ParquetTarget

• after_step – optional, after what step in the graph to add the target

• columns – optional, which columns from data to write

• partitioned – optional, whether to partition the file, False by default, if True without
passing any other partition field, the data will be partitioned by /year/month/day/hour

• key_bucketing_number – optional, None by default will not partition by key, 0 will
partition by the key as is, any other number X will create X partitions and hash the keys
to one of them

• partition_cols – optional, name of columns from the data to partition by

• time_partitioning_granularity – optional. the smallest time unit to partition the
data by. For example “hour” will yield partitions of the format /year/month/day/hour

• max_events – optional. Maximum number of events to write at a time. All events will be
written on flow termination, or after flush_after_seconds (if flush_after_seconds is set).
Default 10k events

• flush_after_seconds – optional. Maximum number of seconds to hold events before
they are written. All events will be written on flow termination, or after max_events are
accumulated (if max_events is set).

Default 15 minutes
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add_writer_state(graph, after, features, key_columns=None, timestamp_key=None)

add_writer_step(graph, after, features, key_columns=None, timestamp_key=None,
featureset_status=None)

as_df(columns=None, df_module=None, entities=None, start_time=None, end_time=None,
time_column=None, **kwargs)

return the target data as dataframe

get_dask_options()

get_spark_options(key_column=None, timestamp_key=None, overwrite=True)

is_offline = True

is_single_file()

kind: str = 'parquet'

support_append = True

support_dask = True

support_spark = True

support_storey = True

class mlrun.datastore.StreamSource(name='stream', group='serving', seek_to='earliest', shards=1,
retention_in_hours=24, extra_attributes: Optional[dict] = None,
**kwargs)

Bases: mlrun.datastore.sources.OnlineSource

Sets stream source for the flow. If stream doesn’t exist it will create it

Sets stream source for the flow. If stream doesn’t exist it will create it

Parameters

• name – stream name. Default “stream”

• group – consumer group. Default “serving”

• seek_to – from where to consume the stream. Default earliest

• shards – number of shards in the stream. Default 1

• retention_in_hours – if stream doesn’t exist and it will be created set retention time.
Default 24h

• extra_attributes – additional nuclio trigger attributes (key/value dict)

add_nuclio_trigger(function)

kind = 'v3ioStream'

class mlrun.datastore.StreamTarget(name: str = '', path=None, attributes: Optional[Dict[str, str]] = None,
after_step=None, columns=None, partitioned: bool = False,
key_bucketing_number: Optional[int] = None, partition_cols:
Optional[List[str]] = None, time_partitioning_granularity:
Optional[str] = None, after_state=None, max_events: Optional[int] =
None, flush_after_seconds: Optional[int] = None, storage_options:
Optional[Dict[str, str]] = None)
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Bases: mlrun.datastore.targets.BaseStoreTarget

add_writer_state(graph, after, features, key_columns=None, timestamp_key=None)

add_writer_step(graph, after, features, key_columns=None, timestamp_key=None,
featureset_status=None)

as_df(columns=None, df_module=None, **kwargs)
return the target data as dataframe

is_online = False

is_table = False

kind: str = 'stream'

support_append = True

support_spark = False

support_storey = True

mlrun.datastore.get_store_resource(uri, db=None, secrets=None, project=None)
get store resource object by uri

41.6 mlrun.db

class mlrun.db.httpdb.HTTPRunDB(base_url, user='', password='', token='')
Bases: mlrun.db.base.RunDBInterface

Interface for accessing and manipulating the mlrun persistent store, maintaining the full state and catalog of
objects that MLRun uses. The HTTPRunDB class serves as a client-side proxy to the MLRun API service which
maintains the actual data-store, accesses the server through REST APIs.

The class provides functions for accessing and modifying the various objects that are used by MLRun in its
operation. The functions provided follow some standard guidelines, which are:

• Every object in MLRun exists in the context of a project (except projects themselves). When referencing
an object through any API, a project name must be provided. The default for most APIs is for an empty
project name, which will be replaced by the name of the default project (usually default). Therefore, if
performing an API to list functions, for example, and not providing a project name - the result will not be
functions from all projects but rather from the default project.

• Many objects can be assigned labels, and listed/queried by label. The label parameter for query APIs
allows for listing objects that:

– Have a specific label, by asking for label="<label_name>". In this case the actual value of the
label doesn’t matter and every object with that label will be returned

– Have a label with a specific value. This is done by specifying
label="<label_name>=<label_value>". In this case only objects whose label matches
the value will be returned

• Most objects have a create method as well as a store method. Create can only be called when such an
does not exist yet, while store allows for either creating a new object or overwriting an existing object.
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• Some objects have a versioned option, in which case overwriting the same object with a different version
of it does not delete the previous version, but rather creates a new version of the object and keeps both
versions. Versioned objects usually have a uid property which is based on their content and allows to
reference a specific version of an object (other than tagging objects, which also allows for easy referencing).

• Many objects have both a store function and a patch function. These are used in the same way as the
corresponding REST verbs - a store is passed a full object and will basically perform a PUT operation,
replacing the full object (if it exists) while patch receives just a dictionary containing the differences to
be applied to the object, and will merge those changes to the existing object. The patch operation also has
a strategy assigned to it which determines how the merge logic should behave. The strategy can be either
replace or additive. For further details on those strategies, refer to https://pypi.org/project/mergedeep/

abort_run(uid, project='', iter=0)
Abort a running run - will remove the run’s runtime resources and mark its state as aborted

api_call(method, path, error=None, params=None, body=None, json=None, headers=None, timeout=45,
version=None)

Perform a direct REST API call on the mlrun API server.

Caution: For advanced usage - prefer using the various APIs exposed through this class, rather than
directly invoking REST calls.

Parameters

• method – REST method (POST, GET, PUT. . . )

• path – Path to endpoint executed, for example "projects"

• error – Error to return if API invocation fails

• body – Payload to be passed in the call. If using JSON objects, prefer using the json
param

• json – JSON payload to be passed in the call

• headers – REST headers, passed as a dictionary: {"<header-name>":
"<header-value>"}

• timeout – API call timeout

• version – API version to use, None (the default) will mean to use the default value
from config, for un-versioned api set an empty string.

Returns Python HTTP response object

connect(secrets=None)
Connect to the MLRun API server. Must be called prior to executing any other method. The code utilizes
the URL for the API server from the configuration - mlconf.dbpath.

For example:

mlconf.dbpath = mlconf.dbpath or 'http://mlrun-api:8080'
db = get_run_db().connect()

create_feature_set(feature_set: Union[dict, mlrun.api.schemas.feature_store.FeatureSet], project='',
versioned=True)→ dict

Create a new FeatureSet and save in the mlrun DB. The feature-set must not previously exist in the DB.

Parameters
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• feature_set – The new FeatureSet to create.

• project – Name of project this feature-set belongs to.

• versioned – Whether to maintain versions for this feature-set. All versions of a ver-
sioned object will be kept in the DB and can be retrieved until explicitly deleted.

Returns The FeatureSet object (as dict).

create_feature_vector(feature_vector: Union[dict, mlrun.api.schemas.feature_store.FeatureVector],
project='', versioned=True)→ dict

Create a new FeatureVector and save in the mlrun DB.

Parameters

• feature_vector – The new FeatureVector to create.

• project – Name of project this feature-vector belongs to.

• versioned – Whether to maintain versions for this feature-vector. All versions of a
versioned object will be kept in the DB and can be retrieved until explicitly deleted.

Returns The FeatureVector object (as dict).

create_marketplace_source(source: Union[dict,
mlrun.api.schemas.marketplace.IndexedMarketplaceSource])

Add a new marketplace source.

MLRun maintains an ordered list of marketplace sources (“sources”). Each source has its details registered
and its order within the list. When creating a new source, the special order -1 can be used to mark this
source as last in the list. However, once the source is in the MLRun list, its order will always be >0.

The global marketplace source always exists in the list, and is always the last source (order = -1). It
cannot be modified nor can it be moved to another order in the list.

The source object may contain credentials which are needed to access the datastore where the source is
stored. These credentials are not kept in the MLRun DB, but are stored inside a kubernetes secret object
maintained by MLRun. They are not returned through any API from MLRun.

Example:

import mlrun.api.schemas

# Add a private source as the last one (will be #1 in the list)
private_source = mlrun.api.schemas.IndexedMarketplaceSource(

order=-1,
source=mlrun.api.schemas.MarketplaceSource(

metadata=mlrun.api.schemas.MarketplaceObjectMetadata(name="priv",␣
→˓description="a private source"),

spec=mlrun.api.schemas.MarketplaceSourceSpec(path="/local/path/to/
→˓source", channel="development")

)
)
db.create_marketplace_source(private_source)

# Add another source as 1st in the list - will push previous one to be #2
another_source = mlrun.api.schemas.IndexedMarketplaceSource(

order=1,
source=mlrun.api.schemas.MarketplaceSource(

metadata=mlrun.api.schemas.MarketplaceObjectMetadata(name="priv-2",␣
→˓description="another source"), (continues on next page)
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(continued from previous page)

spec=mlrun.api.schemas.MarketplaceSourceSpec(
path="/local/path/to/source/2",
channel="development",
credentials={...}

)
)

)
db.create_marketplace_source(another_source)

Parameters source – The source and its order, of type IndexedMarketplaceSource, or in
dictionary form.

Returns The source object as inserted into the database, with credentials stripped.

create_or_patch_model_endpoint(project: str, endpoint_id: str, model_endpoint:
mlrun.api.schemas.model_endpoints.ModelEndpoint, access_key:
Optional[str] = None)

Creates or updates a KV record with the given model_endpoint record

Parameters

• project – The name of the project

• endpoint_id – The id of the endpoint

• model_endpoint – An object representing the model endpoint

• access_key – V3IO access key, when None, will be look for in environ

create_project(project: Union[dict, mlrun.projects.project.MlrunProject,
mlrun.api.schemas.project.Project])→ mlrun.projects.project.MlrunProject

Create a new project. A project with the same name must not exist prior to creation.

create_project_secrets(project: str, provider: Union[str, mlrun.api.schemas.secret.SecretProviderName]
= SecretProviderName.kubernetes, secrets: Optional[dict] = None)

Create project-context secrets using either vault or kubernetes provider. When using with Vault, this
will create needed Vault structures for storing secrets in project-context, and store a set of secret values. The
method generates Kubernetes service-account and the Vault authentication structures that are required for
function Pods to authenticate with Vault and be able to extract secret values passed as part of their context.

Note: This method used with Vault is currently in technical preview, and requires a HashiCorp Vault
infrastructure properly set up and connected to the MLRun API server.

When used with Kubernetes, this will make sure that the project-specific k8s secret is created, and will
populate it with the secrets provided, replacing their values if they exist.

Parameters

• project – The project context for which to generate the infra and store secrets.

• provider – The name of the secrets-provider to work with. Accepts a
SecretProviderName enum.

• secrets – A set of secret values to store. Example:
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secrets = {'password': 'myPassw0rd', 'aws_key': '111222333'}
db.create_project_secrets(

"project1",
provider=mlrun.api.schemas.SecretProviderName.kubernetes,
secrets=secrets

)

create_schedule(project: str, schedule: mlrun.api.schemas.schedule.ScheduleInput)
Create a new schedule on the given project. The details on the actual object to schedule as well as
the schedule itself are within the schedule object provided. The ScheduleCronTrigger follows the
guidelines in https://apscheduler.readthedocs.io/en/v3.6.3/modules/triggers/cron.html. It also supports a
from_crontab() function that accepts a crontab-formatted string (see https://en.wikipedia.org/wiki/Cron
for more information on the format).

Example:

from mlrun.api import schemas

# Execute the get_data_func function every Tuesday at 15:30
schedule = schemas.ScheduleInput(

name="run_func_on_tuesdays",
kind="job",
scheduled_object=get_data_func,
cron_trigger=schemas.ScheduleCronTrigger(day_of_week='tue', hour=15,␣

→˓minute=30),
)
db.create_schedule(project_name, schedule)

create_user_secrets(user: str, provider: Union[str, mlrun.api.schemas.secret.SecretProviderName] =
SecretProviderName.vault, secrets: Optional[dict] = None)

Create user-context secret in Vault. Please refer to create_project_secrets() for more details and
status of this functionality.

Note: This method is currently in technical preview, and requires a HashiCorp Vault infrastructure prop-
erly set up and connected to the MLRun API server.

Parameters

• user – The user context for which to generate the infra and store secrets.

• provider – The name of the secrets-provider to work with. Currently only vault is
supported.

• secrets – A set of secret values to store within the Vault.

del_artifact(key, tag=None, project='')
Delete an artifact.

del_artifacts(name=None, project=None, tag=None, labels=None, days_ago=0)
Delete artifacts referenced by the parameters.

Parameters

• name – Name of artifacts to delete. Note that this is a like query, and is case-insensitive.
See list_artifacts() for more details.
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• project – Project that artifacts belong to.

• tag – Choose artifacts who are assigned this tag.

• labels – Choose artifacts which are labeled.

• days_ago – This parameter is deprecated and not used.

del_run(uid, project='', iter=0)
Delete details of a specific run from DB.

Parameters

• uid – Unique ID for the specific run to delete.

• project – Project that the run belongs to.

• iter – Iteration within a specific task.

del_runs(name=None, project=None, labels=None, state=None, days_ago=0)
Delete a group of runs identified by the parameters of the function.

Example:

db.del_runs(state='completed')

Parameters

• name – Name of the task which the runs belong to.

• project – Project to which the runs belong.

• labels – Filter runs that are labeled using these specific label values.

• state – Filter only runs which are in this state.

• days_ago – Filter runs whose start time is newer than this parameter.

delete_feature_set(name, project='', tag=None, uid=None)
Delete a FeatureSet object from the DB. If tag or uid are specified, then just the version referenced
by them will be deleted. Using both is not allowed. If none are specified, then all instances of the object
whose name is name will be deleted.

delete_feature_vector(name, project='', tag=None, uid=None)
Delete a FeatureVector object from the DB. If tag or uid are specified, then just the version referenced
by them will be deleted. Using both is not allowed. If none are specified, then all instances of the object
whose name is name will be deleted.

delete_function(name: str, project: str = '')
Delete a function belonging to a specific project.

delete_marketplace_source(source_name: str)
Delete a marketplace source from the DB. The source will be deleted from the list, and any following
sources will be promoted - for example, if the 1st source is deleted, the 2nd source will become #1 in the
list. The global marketplace source cannot be deleted.

Parameters source_name – Name of the marketplace source to delete.

delete_model_endpoint_record(project: str, endpoint_id: str, access_key: Optional[str] = None)
Deletes the KV record of a given model endpoint, project and endpoint_id are used for lookup

Parameters
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• project – The name of the project

• endpoint_id – The id of the endpoint

• access_key – V3IO access key, when None, will be look for in environ

delete_project(name: str, deletion_strategy: Union[str, mlrun.api.schemas.constants.DeletionStrategy] =
DeletionStrategy.restricted)

Delete a project.

Parameters

• name – Name of the project to delete.

• deletion_strategy – How to treat child objects of the project. Possible values are:

– restrict (default) - Project must not have any child objects when deleted. If using
this mode while child objects exist, the operation will fail.

– cascade - Automatically delete all child objects when deleting the project.

delete_project_secrets(project: str, provider: Union[str, mlrun.api.schemas.secret.SecretProviderName]
= SecretProviderName.kubernetes, secrets: Optional[List[str]] = None)

Delete project-context secrets from Kubernetes.

Parameters

• project – The project name.

• provider – The name of the secrets-provider to work with. Currently only
kubernetes is supported.

• secrets – A list of secret names to delete. An empty list will delete all secrets as-
signed to this specific project.

delete_runtime(kind: str, label_selector: Optional[str] = None, force: bool = False, grace_period:
Optional[int] = None)

Deprecated use delete_runtime_resources() (with kind filter) instead

delete_runtime_object(kind: str, object_id: str, label_selector: Optional[str] = None, force: bool =
False, grace_period: Optional[int] = None)

Deprecated use delete_runtime_resources() (with kind and object_id filter) instead

delete_runtime_resources(project: Optional[str] = None, label_selector: Optional[str] = None, kind:
Optional[str] = None, object_id: Optional[str] = None, force: bool = False,
grace_period: Optional[int] = None)→ Dict[str, Dict[str,
mlrun.api.schemas.runtime_resource.RuntimeResources]]

Delete all runtime resources which are in terminal state.

Parameters project – Delete only runtime resources of a specific project, by default None,
which will delete only

from the projects you’re authorized to delete from. :param label_selector: Delete only runtime resources
matching the label selector. :param kind: The kind of runtime to delete. May be one of ['dask', 'job',
'spark', 'remote-spark', 'mpijob'] :param object_id: The identifier of the mlrun object to delete
its runtime resources. for most function runtimes, runtime resources are per Run, for which the identifier
is the Run’s UID. For dask runtime, the runtime resources are per Function, for which the identifier is the
Function’s name. :param force: Force deletion - delete the runtime resource even if it’s not in terminal
state or if the grace period didn’t pass. :param grace_period: Grace period given to the runtime resource
before they are actually removed, counted from the moment they moved to terminal state.

Returns GroupedByProjectRuntimeResourcesOutput listing the runtime resources
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that were removed.

delete_runtimes(label_selector: Optional[str] = None, force: bool = False, grace_period: Optional[int] =
None)

Deprecated use delete_runtime_resources() instead

delete_schedule(project: str, name: str)
Delete a specific schedule by name.

static get_api_path_prefix(version: Optional[str] = None)→ str

Parameters version – API version to use, None (the default) will mean to use the default
value from mlconf, for un-versioned api set an empty string.

get_background_task(name: str)→ mlrun.api.schemas.background_task.BackgroundTask
Retrieve updated information on a background task being executed.

get_base_api_url(path: str, version: Optional[str] = None)→ str

get_builder_status(func: mlrun.runtimes.base.BaseRuntime, offset=0, logs=True, last_log_timestamp=0,
verbose=False)

Retrieve the status of a build operation currently in progress.

Parameters

• func – Function object that is being built.

• offset – Offset into the build logs to retrieve logs from.

• logs – Should build logs be retrieved.

• last_log_timestamp – Last timestamp of logs that were already retrieved. Function
will return only logs later than this parameter.

• verbose – Add verbose logs into the output.

Returns

The following parameters:

• Text of builder logs.

• Timestamp of last log retrieved, to be used in subsequent calls to this function.

The function also updates internal members of the func object to reflect build process info.

get_feature_set(name: str, project: str = '', tag: Optional[str] = None, uid: Optional[str] = None)→
mlrun.feature_store.feature_set.FeatureSet

Retrieve a ~mlrun.feature_store.FeatureSet` object. If both tag and uid are not specified, then the object
tagged latest will be retrieved.

Parameters

• name – Name of object to retrieve.

• project – Project the FeatureSet belongs to.

• tag – Tag of the specific object version to retrieve.

• uid – uid of the object to retrieve (can only be used for versioned objects).

get_feature_vector(name: str, project: str = '', tag: Optional[str] = None, uid: Optional[str] = None)→
mlrun.feature_store.feature_vector.FeatureVector

Return a specific feature-vector referenced by its tag or uid. If none are provided, latest tag will be used.
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get_function(name, project='', tag=None, hash_key='')
Retrieve details of a specific function, identified by its name and potentially a tag or function hash.

get_log(uid, project='', offset=0, size=- 1)
Retrieve a log.

Parameters

• uid – Log unique ID

• project – Project name for which the log belongs

• offset – Retrieve partial log, get up to size bytes starting at offset offset from
beginning of log

• size – See offset. If set to -1 (the default) will retrieve all data to end of log.

Returns

The following objects:

• state - The state of the runtime object which generates this log, if it exists. In case no
known state exists, this will be unknown.

• content - The actual log content.

get_marketplace_catalog(source_name: str, channel: Optional[str] = None, version: Optional[str] =
None, tag: Optional[str] = None, force_refresh: bool = False)

Retrieve the item catalog for a specified marketplace source. The list of items can be filtered according to
various filters, using item’s metadata to filter.

Parameters

• source_name – Name of the source.

• channel – Filter items according to their channel. For example development.

• version – Filter items according to their version.

• tag – Filter items based on tag.

• force_refresh – Make the server fetch the catalog from the actual marketplace
source, rather than rely on cached information which may exist from previous get
requests. For example, if the source was re-built, this will make the server get the
updated information. Default is False.

Returns MarketplaceCatalog object, which is essentially a list of MarketplaceItem en-
tries.

get_marketplace_item(source_name: str, item_name: str, channel: str = 'development', version:
Optional[str] = None, tag: str = 'latest', force_refresh: bool = False)

Retrieve a specific marketplace item.

Parameters

• source_name – Name of source.

• item_name – Name of the item to retrieve, as it appears in the catalog.

• channel – Get the item from the specified channel. Default is development.

• version – Get a specific version of the item. Default is None.

• tag – Get a specific version of the item identified by tag. Default is latest.
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• force_refresh – Make the server fetch the information from the actual marketplace
source, rather than rely on cached information. Default is False.

Returns MarketplaceItem.

get_marketplace_source(source_name: str)
Retrieve a marketplace source from the DB.

Parameters source_name – Name of the marketplace source to retrieve.

get_model_endpoint(project: str, endpoint_id: str, start: Optional[str] = None, end: Optional[str] = None,
metrics: Optional[List[str]] = None, feature_analysis: bool = False, access_key:
Optional[str] = None)→ mlrun.api.schemas.model_endpoints.ModelEndpoint

Returns a ModelEndpoint object with additional metrics and feature related data.

Parameters

• project – The name of the project

• endpoint_id – The id of the model endpoint

• metrics – A list of metrics to return for each endpoint, read more in ‘TimeMetric’

• start – The start time of the metrics

• end – The end time of the metrics

• feature_analysis – When True, the base feature statistics and current feature statis-
tics will be added to

the output of the resulting object :param access_key: V3IO access key, when None, will be look for in
environ

get_pipeline(run_id: str, namespace: Optional[str] = None, timeout: int = 10, format_: Union[str,
mlrun.api.schemas.pipeline.PipelinesFormat] = PipelinesFormat.summary, project:
Optional[str] = None)

Retrieve details of a specific pipeline using its run ID (as provided when the pipeline was executed).

get_project(name: str)→ mlrun.projects.project.MlrunProject
Get details for a specific project.

get_project_background_task(project: str, name: str)→
mlrun.api.schemas.background_task.BackgroundTask

Retrieve updated information on a project background task being executed.

get_runtime(kind: str, label_selector: Optional[str] = None)→ Dict
Deprecated use list_runtime_resources() (with kind filter) instead

get_schedule(project: str, name: str, include_last_run: bool = False)→
mlrun.api.schemas.schedule.ScheduleOutput

Retrieve details of the schedule in question. Besides returning the details of the schedule object itself, this
function also returns the next scheduled run for this specific schedule, as well as potentially the results of
the last run executed through this schedule.

Parameters

• project – Project name.

• name – Name of the schedule object to query.

• include_last_run – Whether to include the results of the schedule’s last run in the
response.
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invoke_schedule(project: str, name: str)
Execute the object referenced by the schedule immediately.

kind = 'http'

list_artifact_tags(project=None)→ List[str]
Return a list of all the tags assigned to artifacts in the scope of the given project.

list_artifacts(name=None, project=None, tag=None, labels=None, since=None, until=None, iter:
Optional[int] = None, best_iteration: bool = False, kind: Optional[str] = None, category:
Optional[Union[str, mlrun.api.schemas.artifact.ArtifactCategories]] = None)→
mlrun.lists.ArtifactList

List artifacts filtered by various parameters.

Examples:

# Show latest version of all artifacts in project
latest_artifacts = db.list_artifacts('', tag='latest', project='iris')
# check different artifact versions for a specific artifact
result_versions = db.list_artifacts('results', tag='*', project='iris')

Parameters

• name – Name of artifacts to retrieve. Name is used as a like query, and is not case-
sensitive. This means that querying for name may return artifacts named my_Name_1
or surname.

• project – Project name.

• tag – Return artifacts assigned this tag.

• labels – Return artifacts that have these labels.

• since – Not in use in HTTPRunDB.

• until – Not in use in HTTPRunDB.

• iter – Return artifacts from a specific iteration (where iter=0 means the root itera-
tion). If None (default) return artifacts from all iterations.

• best_iteration – Returns the artifact which belongs to the best iteration of a given
run, in the case of artifacts generated from a hyper-param run. If only a single itera-
tion exists, will return the artifact from that iteration. If using best_iter, the iter
parameter must not be used.

• kind – Return artifacts of the requested kind.

• category – Return artifacts of the requested category.

list_entities(project: str, name: Optional[str] = None, tag: Optional[str] = None, labels:
Optional[List[str]] = None)→ List[dict]

Retrieve a list of entities and their mapping to the containing feature-sets. This function is similar to the
list_features() function, and uses the same logic. However, the entities are matched against the name
rather than the features.
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list_feature_sets(project: str = '', name: Optional[str] = None, tag: Optional[str] = None, state:
Optional[str] = None, entities: Optional[List[str]] = None, features:
Optional[List[str]] = None, labels: Optional[List[str]] = None, partition_by:
Optional[Union[mlrun.api.schemas.constants.FeatureStorePartitionByField, str]] =
None, rows_per_partition: int = 1, partition_sort_by:
Optional[Union[mlrun.api.schemas.constants.SortField, str]] = None, partition_order:
Union[mlrun.api.schemas.constants.OrderType, str] = OrderType.desc)→
List[mlrun.feature_store.feature_set.FeatureSet]

Retrieve a list of feature-sets matching the criteria provided.

Parameters

• project – Project name.

• name – Name of feature-set to match. This is a like query, and is case-insensitive.

• tag – Match feature-sets with specific tag.

• state – Match feature-sets with a specific state.

• entities – Match feature-sets which contain entities whose name is in this list.

• features – Match feature-sets which contain features whose name is in this list.

• labels – Match feature-sets which have these labels.

• partition_by – Field to group results by. Only allowed value is name. When parti-
tion_by is specified, the partition_sort_by parameter must be provided as well.

• rows_per_partition – How many top rows (per sorting defined by parti-
tion_sort_by and partition_order) to return per group. Default value is 1.

• partition_sort_by – What field to sort the results by, within each partition defined
by partition_by. Currently the only allowed value are created and updated.

• partition_order – Order of sorting within partitions - asc or desc. Default is desc.

Returns List of matching FeatureSet objects.

list_feature_vectors(project: str = '', name: Optional[str] = None, tag: Optional[str] = None, state:
Optional[str] = None, labels: Optional[List[str]] = None, partition_by:
Optional[Union[mlrun.api.schemas.constants.FeatureStorePartitionByField, str]]
= None, rows_per_partition: int = 1, partition_sort_by:
Optional[Union[mlrun.api.schemas.constants.SortField, str]] = None,
partition_order: Union[mlrun.api.schemas.constants.OrderType, str] =
OrderType.desc)→ List[mlrun.feature_store.feature_vector.FeatureVector]

Retrieve a list of feature-vectors matching the criteria provided.

Parameters

• project – Project name.

• name – Name of feature-vector to match. This is a like query, and is case-insensitive.

• tag – Match feature-vectors with specific tag.

• state – Match feature-vectors with a specific state.

• labels – Match feature-vectors which have these labels.

• partition_by – Field to group results by. Only allowed value is name. When parti-
tion_by is specified, the partition_sort_by parameter must be provided as well.
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• rows_per_partition – How many top rows (per sorting defined by parti-
tion_sort_by and partition_order) to return per group. Default value is 1.

• partition_sort_by – What field to sort the results by, within each partition defined
by partition_by. Currently the only allowed values are created and updated.

• partition_order – Order of sorting within partitions - asc or desc. Default is desc.

Returns List of matching FeatureVector objects.

list_features(project: str, name: Optional[str] = None, tag: Optional[str] = None, entities:
Optional[List[str]] = None, labels: Optional[List[str]] = None)→ List[dict]

List feature-sets which contain specific features. This function may return multiple versions of the same
feature-set if a specific tag is not requested. Note that the various filters of this function actually refer to
the feature-set object containing the features, not to the features themselves.

Parameters

• project – Project which contains these features.

• name – Name of the feature to look for. The name is used in a like query, and is not
case-sensitive. For example, looking for feat will return features which are named
MyFeature as well as defeat.

• tag – Return feature-sets which contain the features looked for, and are tagged with
the specific tag.

• entities – Return only feature-sets which contain an entity whose name is contained
in this list.

• labels – Return only feature-sets which are labeled as requested.

Returns A list of mapping from feature to a digest of the feature-set, which contains the feature-
set meta-data. Multiple entries may be returned for any specific feature due to multiple tags
or versions of the feature-set.

list_functions(name=None, project=None, tag=None, labels=None)
Retrieve a list of functions, filtered by specific criteria.

Parameters

• name – Return only functions with a specific name.

• project – Return functions belonging to this project. If not specified, the default
project is used.

• tag – Return function versions with specific tags.

• labels – Return functions that have specific labels assigned to them.

Returns List of function objects (as dictionary).

list_marketplace_sources()

List marketplace sources in the MLRun DB.

list_model_endpoints(project: str, model: Optional[str] = None, function: Optional[str] = None, labels:
Optional[List[str]] = None, start: str = 'now-1h', end: str = 'now', metrics:
Optional[List[str]] = None, access_key: Optional[str] = None, top_level: bool =
False, uids: Optional[List[str]] = None)→
mlrun.api.schemas.model_endpoints.ModelEndpointList

Returns a list of ModelEndpointState objects. Each object represents the current state of a model endpoint.
This functions supports filtering by the following parameters: 1) model 2) function 3) labels By default,
when no filters are applied, all available endpoints for the given project will be listed.
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In addition, this functions provides a facade for listing endpoint related metrics. This facade is time-based
and depends on the ‘start’ and ‘end’ parameters. By default, when the metrics parameter is None, no
metrics are added to the output of this function.

Parameters

• project – The name of the project

• model – The name of the model to filter by

• function – The name of the function to filter by

• labels – A list of labels to filter by. Label filters work by either filtering a specific
value of a label

(i.e. list(“key==value”)) or by looking for the existence of a given key (i.e. “key”) :param metrics: A list of
metrics to return for each endpoint, read more in ‘TimeMetric’ :param start: The start time of the metrics
:param end: The end time of the metrics :param access_key: V3IO access key, when None, will be look
for in environ :param top_level: if true will return only routers and endpoint that are NOT children of any
router :param uids: if passed will return ModelEndpointList of endpoints with uid in uids

list_pipelines(project: str, namespace: Optional[str] = None, sort_by: str = '', page_token: str = '',
filter_: str = '', format_: Union[str, mlrun.api.schemas.pipeline.PipelinesFormat] =
PipelinesFormat.metadata_only, page_size: Optional[int] = None)→
mlrun.api.schemas.pipeline.PipelinesOutput

Retrieve a list of KFP pipelines. This function can be invoked to get all pipelines from all projects, by
specifying project=*, in which case pagination can be used and the various sorting and pagination prop-
erties can be applied. If a specific project is requested, then the pagination options cannot be used and
pagination is not applied.

Parameters

• project – Project name. Can be * for query across all projects.

• namespace – Kubernetes namespace in which the pipelines are executing.

• sort_by – Field to sort the results by.

• page_token – Use for pagination, to retrieve next page.

• filter – Kubernetes filter to apply to the query, can be used to filter on specific object
fields.

• format – Result format. Can be one of:

– full - return the full objects.

– metadata_only (default) - return just metadata of the pipelines objects.

– name_only - return just the names of the pipeline objects.

• page_size – Size of a single page when applying pagination.

list_project_secret_keys(project: str, provider: Union[str,
mlrun.api.schemas.secret.SecretProviderName] =
SecretProviderName.kubernetes, token: Optional[str] = None)→
mlrun.api.schemas.secret.SecretKeysData

Retrieve project-context secret keys from Vault or Kubernetes.

Note: This method for Vault functionality is currently in technical preview, and requires a HashiCorp
Vault infrastructure properly set up and connected to the MLRun API server.
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Parameters

• project – The project name.

• provider – The name of the secrets-provider to work with. Accepts a
SecretProviderName enum.

• token – Vault token to use for retrieving secrets. Only in use if provider is vault.
Must be a valid Vault token, with permissions to retrieve secrets of the project in ques-
tion.

list_project_secrets(project: str, token: Optional[str] = None, provider: Union[str,
mlrun.api.schemas.secret.SecretProviderName] = SecretProviderName.kubernetes,
secrets: Optional[List[str]] = None)→ mlrun.api.schemas.secret.SecretsData

Retrieve project-context secrets from Vault.

Note: This method for Vault functionality is currently in technical preview, and requires a HashiCorp
Vault infrastructure properly set up and connected to the MLRun API server.

Parameters

• project – The project name.

• token – Vault token to use for retrieving secrets. Must be a valid Vault token, with
permissions to retrieve secrets of the project in question.

• provider – The name of the secrets-provider to work with. Currently only vault is
accepted.

• secrets – A list of secret names to retrieve. An empty list [] will retrieve all secrets
assigned to this specific project. kubernetes provider only supports an empty list.

list_projects(owner: Optional[str] = None, format_: Union[str,
mlrun.api.schemas.project.ProjectsFormat] = ProjectsFormat.full, labels:
Optional[List[str]] = None, state: Optional[Union[str,
mlrun.api.schemas.project.ProjectState]] = None)→
List[Union[mlrun.projects.project.MlrunProject, str]]

Return a list of the existing projects, potentially filtered by specific criteria.

Parameters

• owner – List only projects belonging to this specific owner.

• format – Format of the results. Possible values are:

– full (default value) - Return full project objects.

– name_only - Return just the names of the projects.

• labels – Filter by labels attached to the project.

• state – Filter by project’s state. Can be either online or archived.
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list_runs(name=None, uid=None, project=None, labels=None, state=None, sort=True, last=0, iter=False,
start_time_from: Optional[datetime.datetime] = None, start_time_to:
Optional[datetime.datetime] = None, last_update_time_from: Optional[datetime.datetime] =
None, last_update_time_to: Optional[datetime.datetime] = None, partition_by:
Optional[Union[mlrun.api.schemas.constants.RunPartitionByField, str]] = None,
rows_per_partition: int = 1, partition_sort_by:
Optional[Union[mlrun.api.schemas.constants.SortField, str]] = None, partition_order:
Union[mlrun.api.schemas.constants.OrderType, str] = OrderType.desc, max_partitions: int = 0)
→ mlrun.lists.RunList

Retrieve a list of runs, filtered by various options. Example:

runs = db.list_runs(name='download', project='iris', labels='owner=admin')
# If running in Jupyter, can use the .show() function to display the results
db.list_runs(name='', project=project_name).show()

Parameters

• name – Name of the run to retrieve.

• uid – Unique ID of the run.

• project – Project that the runs belongs to.

• labels – List runs that have a specific label assigned. Currently only a single label
filter can be applied, otherwise result will be empty.

• state – List only runs whose state is specified.

• sort – Whether to sort the result according to their start time. Otherwise, results will
be returned by their internal order in the DB (order will not be guaranteed).

• last – Deprecated - currently not used.

• iter – If True return runs from all iterations. Otherwise, return only runs whose
iter is 0.

• start_time_from – Filter by run start time in [start_time_from,
start_time_to].

• start_time_to – Filter by run start time in [start_time_from,
start_time_to].

• last_update_time_from – Filter by run last update time in
(last_update_time_from, last_update_time_to).

• last_update_time_to – Filter by run last update time in
(last_update_time_from, last_update_time_to).

• partition_by – Field to group results by. Only allowed value is name. When parti-
tion_by is specified, the partition_sort_by parameter must be provided as well.

• rows_per_partition – How many top rows (per sorting defined by parti-
tion_sort_by and partition_order) to return per group. Default value is 1.

• partition_sort_by – What field to sort the results by, within each partition defined
by partition_by. Currently the only allowed values are created and updated.

• partition_order – Order of sorting within partitions - asc or desc. Default is desc.

• max_partitions – Maximal number of partitions to include in the result. Default is
0 which means no limit.
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list_runtime_resources(project: Optional[str] = None, label_selector: Optional[str] = None, kind:
Optional[str] = None, object_id: Optional[str] = None, group_by: Op-
tional[mlrun.api.schemas.runtime_resource.ListRuntimeResourcesGroupByField]
= None)→
Union[List[mlrun.api.schemas.runtime_resource.KindRuntimeResources],
Dict[str, Dict[str, mlrun.api.schemas.runtime_resource.RuntimeResources]]]

List current runtime resources, which are usually (but not limited to) Kubernetes pods or CRDs. Function
applies for runs of type ['dask', 'job', 'spark', 'remote-spark', 'mpijob'], and will return
per runtime kind a list of the runtime resources (which may have already completed their execution).

Parameters project – Get only runtime resources of a specific project, by default None,
which will return only the

projects you’re authorized to see. :param label_selector: A label filter that will be passed to Kubernetes
for filtering the results according

to their labels.

Parameters

• kind – The kind of runtime to query. May be one of ['dask', 'job', 'spark',
'remote-spark', 'mpijob']

• object_id – The identifier of the mlrun object to query its runtime resources. for
most function runtimes,

runtime resources are per Run, for which the identifier is the Run’s UID. For dask runtime, the runtime
resources are per Function, for which the identifier is the Function’s name. :param group_by: Object to
group results by. Allowed values are job and project.

list_runtimes(label_selector: Optional[str] = None)→ List
Deprecated use list_runtime_resources() instead

list_schedules(project: str, name: Optional[str] = None, kind:
Optional[mlrun.api.schemas.schedule.ScheduleKinds] = None, include_last_run: bool =
False)→ mlrun.api.schemas.schedule.SchedulesOutput

Retrieve list of schedules of specific name or kind.

Parameters

• project – Project name.

• name – Name of schedule to retrieve. Can be omitted to list all schedules.

• kind – Kind of schedule objects to retrieve, can be either job or pipeline.

• include_last_run – Whether to return for each schedule returned also the results
of the last run of that schedule.

patch_feature_set(name, feature_set_update: dict, project='', tag=None, uid=None, patch_mode:
Union[str, mlrun.api.schemas.constants.PatchMode] = PatchMode.replace)

Modify (patch) an existing FeatureSet object. The object is identified by its name (and project it belongs
to), as well as optionally a tag or its uid (for versioned object). If both tag and uid are omitted then the
object with tag latest is modified.

Parameters

• name – Name of the object to patch.

• feature_set_update – The modifications needed in the object. This parameter only
has the changes in it, not a full object. Example:
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feature_set_update = {"status": {"processed" : True}}

Will apply the field status.processed to the existing object.

• project – Project which contains the modified object.

• tag – The tag of the object to modify.

• uid – uid of the object to modify.

• patch_mode – The strategy for merging the changes with the existing object. Can be
either replace or additive.

patch_feature_vector(name, feature_vector_update: dict, project='', tag=None, uid=None, patch_mode:
Union[str, mlrun.api.schemas.constants.PatchMode] = PatchMode.replace)

Modify (patch) an existing FeatureVector object. The object is identified by its name (and project it
belongs to), as well as optionally a tag or its uid (for versioned object). If both tag and uid are omitted
then the object with tag latest is modified.

Parameters

• name – Name of the object to patch.

• feature_vector_update – The modifications needed in the object. This parameter
only has the changes in it, not a full object.

• project – Project which contains the modified object.

• tag – The tag of the object to modify.

• uid – uid of the object to modify.

• patch_mode – The strategy for merging the changes with the existing object. Can be
either replace or additive.

patch_project(name: str, project: dict, patch_mode: Union[str, mlrun.api.schemas.constants.PatchMode]
= PatchMode.replace)→ mlrun.projects.project.MlrunProject

Patch an existing project object.

Parameters

• name – Name of project to patch.

• project – The actual changes to the project object.

• patch_mode – The strategy for merging the changes with the existing object. Can be
either replace or additive.

read_artifact(key, tag=None, iter=None, project='')
Read an artifact, identified by its key, tag and iteration.

read_run(uid, project='', iter=0)
Read the details of a stored run from the DB.

Parameters

• uid – The run’s unique ID.

• project – Project name.

• iter – Iteration within a specific execution.
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remote_builder(func, with_mlrun, mlrun_version_specifier=None, skip_deployed=False,
builder_env=None)

Build the pod image for a function, for execution on a remote cluster. This is executed by the MLRun API
server, and creates a Docker image out of the function provided and any specific build instructions provided
within. This is a pre-requisite for remotely executing a function, unless using a pre-deployed image.

Parameters

• func – Function to build.

• with_mlrun – Whether to add MLRun package to the built package. This is not
required if using a base image that already has MLRun in it.

• mlrun_version_specifier – Version of MLRun to include in the built image.

• skip_deployed – Skip the build if we already have an image for the function.

• builder_env – Kaniko builder pod env vars dict (for config/credentials)

remote_start(func_url)→ mlrun.api.schemas.background_task.BackgroundTask
Execute a function remotely, Used for dask functions.

Parameters func_url – URL to the function to be executed.

Returns A BackgroundTask object, with details on execution process and its status.

remote_status(project, name, kind, selector)
Retrieve status of a function being executed remotely (relevant to dask functions).

Parameters

• project – The project of the function

• name – The name of the function

• kind – The kind of the function, currently dask is supported.

• selector – Selector clause to be applied to the Kubernetes status query to filter the
results.

store_artifact(key, artifact, uid, iter=None, tag=None, project='')
Store an artifact in the DB.

Parameters

• key – Identifying key of the artifact.

• artifact – The actual artifact to store.

• uid – A unique ID for this specific version of the artifact.

• iter – The task iteration which generated this artifact. If iter is not None the itera-
tion will be added to the key provided to generate a unique key for the artifact of the
specific iteration.

• tag – Tag of the artifact.

• project – Project that the artifact belongs to.

store_feature_set(feature_set: Union[dict, mlrun.api.schemas.feature_store.FeatureSet], name=None,
project='', tag=None, uid=None, versioned=True)→ dict

Save a FeatureSet object in the mlrun DB. The feature-set can be either a new object or a modification
to existing object referenced by the params of the function.

Parameters
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• feature_set – The FeatureSet to store.

• project – Name of project this feature-set belongs to.

• tag – The tag of the object to replace in the DB, for example latest.

• uid – The uid of the object to replace in the DB. If using this parameter, the modified
object must have the same uid of the previously-existing object. This cannot be used
for non-versioned objects.

• versioned – Whether to maintain versions for this feature-set. All versions of a ver-
sioned object will be kept in the DB and can be retrieved until explicitly deleted.

Returns The FeatureSet object (as dict).

store_feature_vector(feature_vector: Union[dict, mlrun.api.schemas.feature_store.FeatureVector],
name=None, project='', tag=None, uid=None, versioned=True)→ dict

Store a FeatureVector object in the mlrun DB. The feature-vector can be either a new object or a
modification to existing object referenced by the params of the function.

Parameters

• feature_vector – The FeatureVector to store.

• project – Name of project this feature-vector belongs to.

• tag – The tag of the object to replace in the DB, for example latest.

• uid – The uid of the object to replace in the DB. If using this parameter, the modified
object must have the same uid of the previously-existing object. This cannot be used
for non-versioned objects.

• versioned – Whether to maintain versions for this feature-vector. All versions of a
versioned object will be kept in the DB and can be retrieved until explicitly deleted.

Returns The FeatureVector object (as dict).

store_function(function, name, project='', tag=None, versioned=False)
Store a function object. Function is identified by its name and tag, and can be versioned.

store_log(uid, project='', body=None, append=False)
Save a log persistently.

Parameters

• uid – Log unique ID

• project – Project name for which this log belongs

• body – The actual log to store

• append – Whether to append the log provided in body to an existing log with the
same uid or to create a new log. If set to False, an existing log with same uid will
be overwritten

store_marketplace_source(source_name: str, source: Union[dict,
mlrun.api.schemas.marketplace.IndexedMarketplaceSource])

Create or replace a marketplace source. For an example of the source format and explanation of the source
order logic, please see create_marketplace_source(). This method can be used to modify the source
itself or its order in the list of sources.

Parameters
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• source_name – Name of the source object to modify/create. It must match the
source.metadata.name parameter in the source itself.

• source – Source object to store in the database.

Returns The source object as stored in the DB.

store_project(name: str, project: Union[dict, mlrun.projects.project.MlrunProject,
mlrun.api.schemas.project.Project])→ mlrun.projects.project.MlrunProject

Store a project in the DB. This operation will overwrite existing project of the same name if exists.

store_run(struct, uid, project='', iter=0)
Store run details in the DB. This method is usually called from within other mlrun flows and not called
directly by the user.

submit_job(runspec, schedule: Optional[Union[str, mlrun.api.schemas.schedule.ScheduleCronTrigger]] =
None)

Submit a job for remote execution.

Parameters

• runspec – The runtime object spec (Task) to execute.

• schedule – Whether to schedule this job using a Cron trigger. If not specified, the
job will be submitted immediately.

submit_pipeline(project, pipeline, arguments=None, experiment=None, run=None, namespace=None,
artifact_path=None, ops=None, ttl=None)

Submit a KFP pipeline for execution.

Parameters

• project – The project of the pipeline

• pipeline – Pipeline function or path to .yaml/.zip pipeline file.

• arguments – A dictionary of arguments to pass to the pipeline.

• experiment – A name to assign for the specific experiment.

• run – A name for this specific run.

• namespace – Kubernetes namespace to execute the pipeline in.

• artifact_path – A path to artifacts used by this pipeline.

• ops – Transformers to apply on all ops in the pipeline.

• ttl – Set the TTL for the pipeline after its completion.

trigger_migrations()→ Optional[mlrun.api.schemas.background_task.BackgroundTask]
Trigger migrations (will do nothing if no migrations are needed) and wait for them to finish if actually
triggered :returns: BackgroundTask.

update_run(updates: dict, uid, project='', iter=0)
Update the details of a stored run in the DB.

update_schedule(project: str, name: str, schedule: mlrun.api.schemas.schedule.ScheduleUpdate)
Update an existing schedule, replace it with the details contained in the schedule object.

verify_authorization(authorization_verification_input:
mlrun.api.schemas.auth.AuthorizationVerificationInput)

Verifies authorization for the provided action on the provided resource.
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Parameters authorization_verification_input – Instance of
AuthorizationVerificationInput that includes all the needed parameters for
the auth verification

watch_log(uid, project='', watch=True, offset=0)
Retrieve logs of a running process, and watch the progress of the execution until it completes. This method
will print out the logs and continue to periodically poll for, and print, new logs as long as the state of the
runtime which generates this log is either pending or running.

Parameters

• uid – The uid of the log object to watch.

• project – Project that the log belongs to.

• watch – If set to True will continue tracking the log as described above. Otherwise
this function is practically equivalent to the get_log() function.

• offset – Minimal offset in the log to watch.

Returns The final state of the log being watched.

class mlrun.api.schemas.secret.SecretProviderName(value)
Bases: str, enum.Enum

Enum containing names of valid providers for secrets.

kubernetes = 'kubernetes'

vault = 'vault'

41.7 mlrun.execution

class mlrun.execution.MLClientCtx(autocommit=False, tmp='', log_stream=None)
Bases: object

ML Execution Client Context

the context is generated and injected to the function using the function.run() or manually using the
get_or_create_ctx() call and provides an interface to use run params, metadata, inputs, and outputs

base metadata include: uid, name, project, and iteration (for hyper params) users can set labels and an-
notations using set_label(), set_annotation() access parameters and secrets using get_param(),
get_secret() access input data objects using get_input() store results, artifacts, and real-time metrics using
the log_result(), log_artifact(), log_dataset() and log_model() methods

see doc for the individual params and methods

property annotations

dictionary with annotations (read-only)

artifact_subpath(*subpaths)
subpaths under output path artifacts path

example:

data_path=context.artifact_subpath('data')
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property artifacts

dictionary of artifacts (read-only)

commit(message: str = '', completed=True)
save run state and optionally add a commit message

Parameters

• message – commit message to save in the run

• completed – mark run as completed

classmethod from_dict(attrs: dict, rundb='', autocommit=False, tmp='', host=None, log_stream=None,
is_api=False)

create execution context from dict

get_cached_artifact(key)
return an logged artifact from cache (for potential updates)

get_child_context(with_parent_params=False, **params)
get child context (iteration)

allow sub experiments (epochs, hyper-param, ..) under a parent will create a new iteration, log_xx will
update the child only use commit_children() to save all the children and specify the best run

example:

def handler(context: mlrun.MLClientCtx, data: mlrun.DataItem):
df = data.as_df()
best_accuracy = accuracy_sum = 0
for param in param_list:

with context.get_child_context(myparam=param) as child:
accuracy = child_handler(child, df, **child.parameters)
accuracy_sum += accuracy
child.log_result('accuracy', accuracy)
if accuracy > best_accuracy:

child.mark_as_best()
best_accuracy = accuracy

context.log_result('avg_accuracy', accuracy_sum / len(param_list))

Parameters

• params – extra (or override) params to parent context

• with_parent_params – child will copy the parent parameters and add to them

Returns child context

get_dataitem(url)
get mlrun dataitem from url

example:

data = context.get_dataitem("s3://my-bucket/file.csv").as_df()
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get_input(key: str, url: str = '')
get an input DataItem object, data objects have methods such as .get(), .download(), .url, .. to access the
actual data

example:

data = context.get_input("my_data").get()

get_meta()

Reserved for internal use

get_param(key: str, default=None)
get a run parameter, or use the provided default if not set

example:

p1 = context.get_param("p1", 0)

get_project_param(key: str, default=None)
get a parameter from the run’s project’s parameters

get_secret(key: str)
get a key based secret e.g. DB password from the context secrets can be specified when invoking a run
through vault, files, env, ..

example:

access_key = context.get_secret("ACCESS_KEY")

get_store_resource(url)
get mlrun data resource (feature set/vector, artifact, item) from url

example:

feature_vector = context.get_store_resource("store://feature-vectors/default/
→˓myvec")
dataset = context.get_store_resource("store://artifacts/default/mydata")

Parameters url – store resource uri/path, store://<type>/<project>/<name>:<version> types:
artifacts | feature-sets | feature-vectors

property in_path

default input path for data objects

property inputs

dictionary of input data items (read-only)

property iteration

child iteration index, for hyper parameters

kind = 'run'

property labels

dictionary with labels (read-only)
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log_artifact(item, body=None, local_path=None, artifact_path=None, tag='', viewer=None,
target_path='', src_path=None, upload=None, labels=None, format=None, db_key=None,
**kwargs)

log an output artifact and optionally upload it to datastore

example:

context.log_artifact(
"some-data",
body=b"abc is 123",
local_path="model.txt",
labels={"framework": "xgboost"},

)

Parameters

• item – artifact key or artifact class ()

• body – will use the body as the artifact content

• local_path – path to the local file we upload, will also be use as the destination
subpath (under “artifact_path”)

• artifact_path – target artifact path (when not using the default) to define a subpath
under the default location use: artifact_path=context.artifact_subpath(‘data’)

• tag – version tag

• viewer – kubeflow viewer type

• target_path – absolute target path (instead of using artifact_path + local_path)

• src_path – deprecated, use local_path

• upload – upload to datastore (default is True)

• labels – a set of key/value labels to tag the artifact with

• format – optional, format to use (e.g. csv, parquet, ..)

• db_key – the key to use in the artifact DB table, by default its run name + ‘_’ + key
db_key=False will not register it in the artifacts table

Returns artifact object

log_dataset(key, df, tag='', local_path=None, artifact_path=None, upload=True, labels=None, format='',
preview=None, stats=False, db_key=None, target_path='', extra_data=None, label_column:
Optional[str] = None, **kwargs)

log a dataset artifact and optionally upload it to datastore

example:

raw_data = {
"first_name": ["Jason", "Molly", "Tina", "Jake", "Amy"],
"last_name": ["Miller", "Jacobson", "Ali", "Milner", "Cooze"],
"age": [42, 52, 36, 24, 73],
"testScore": [25, 94, 57, 62, 70],

}
(continues on next page)
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(continued from previous page)

df = pd.DataFrame(raw_data, columns=["first_name", "last_name", "age",
→˓"testScore"])
context.log_dataset("mydf", df=df, stats=True)

Parameters

• key – artifact key

• df – dataframe object

• label_column – name of the label column (the one holding the target (y) values)

• local_path – path to the local file we upload, will also be use as the destination
subpath (under “artifact_path”)

• artifact_path – target artifact path (when not using the default) to define a subpath
under the default location use: artifact_path=context.artifact_subpath(‘data’)

• tag – version tag

• format – optional, format to use (e.g. csv, parquet, ..)

• target_path – absolute target path (instead of using artifact_path + local_path)

• preview – number of lines to store as preview in the artifact metadata

• stats – calculate and store dataset stats in the artifact metadata

• extra_data – key/value list of extra files/charts to link with this dataset

• upload – upload to datastore (default is True)

• labels – a set of key/value labels to tag the artifact with

• db_key – the key to use in the artifact DB table, by default its run name + ‘_’ + key
db_key=False will not register it in the artifacts table

Returns artifact object

log_iteration_results(best, summary: list, task: dict, commit=False)
Reserved for internal use

property log_level

get the logging level, e.g. ‘debug’, ‘info’, ‘error’

log_metric(key: str, value, timestamp=None, labels=None)
TBD, log a real-time time-series metric

log_metrics(keyvals: dict, timestamp=None, labels=None)
TBD, log a set of real-time time-series metrics

log_model(key, body=None, framework='', tag='', model_dir=None, model_file=None, algorithm=None,
metrics=None, parameters=None, artifact_path=None, upload=True, labels=None, inputs:
Optional[List[mlrun.features.Feature]] = None, outputs: Optional[List[mlrun.features.Feature]]
= None, feature_vector: Optional[str] = None, feature_weights: Optional[list] = None,
training_set=None, label_column: Optional[Union[str, list]] = None, extra_data=None,
db_key=None, **kwargs)

log a model artifact and optionally upload it to datastore

example:
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context.log_model("model", body=dumps(model),
model_file="model.pkl",
metrics=context.results,
training_set=training_df,
label_column='label',
feature_vector=feature_vector_uri,
labels={"app": "fraud"})

Parameters

• key – artifact key or artifact class ()

• body – will use the body as the artifact content

• model_file – path to the local model file we upload (see also model_dir) or to a
model file data url (e.g. http://host/path/model.pkl)

• model_dir – path to the local dir holding the model file and extra files

• artifact_path – target artifact path (when not using the default) to define a subpath
under the default location use: artifact_path=context.artifact_subpath(‘data’)

• framework – name of the ML framework

• algorithm – training algorithm name

• tag – version tag

• metrics – key/value dict of model metrics

• parameters – key/value dict of model parameters

• inputs – ordered list of model input features (name, type, ..)

• outputs – ordered list of model output/result elements (name, type, ..)

• upload – upload to datastore (default is True)

• labels – a set of key/value labels to tag the artifact with

• feature_vector – feature store feature vector uri (store://feature-
vectors/<project>/<name>[:tag])

• feature_weights – list of feature weights, one per input column

• training_set – training set dataframe, used to infer inputs & outputs

• label_column – which columns in the training set are the label (target) columns

• extra_data – key/value list of extra files/charts to link with this dataset value can be
absolute path | relative path (to model dir) | bytes | artifact object

• db_key – the key to use in the artifact DB table, by default its run name + ‘_’ + key
db_key=False will not register it in the artifacts table

Returns artifact object

log_result(key: str, value, commit=False)
log a scalar result value

example:

context.log_result('accuracy', 0.85)
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Parameters

• key – result key

• value – result value

• commit – commit (write to DB now vs wait for the end of the run)

log_results(results: dict, commit=False)
log a set of scalar result values

example:

context.log_results({'accuracy': 0.85, 'loss': 0.2})

Parameters

• results – key/value dict or results

• commit – commit (write to DB now vs wait for the end of the run)

property logger

built-in logger interface

example:

context.logger.info("started experiment..", param=5)

mark_as_best()

mark a child as the best iteration result, see .get_child_context()

property out_path

default output path for artifacts

property parameters

dictionary of run parameters (read-only)

property project

project name, runs can be categorized by projects

property results

dictionary of results (read-only)

set_annotation(key: str, value, replace: bool = True)
set/record a specific annotation

example:

context.set_annotation("comment", "some text")

set_hostname(host: str)
update the hostname, for internal use

set_label(key: str, value, replace: bool = True)
set/record a specific label

example:
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context.set_label("framework", "sklearn")

set_logger_stream(stream)

set_state(state: Optional[str] = None, error: Optional[str] = None, commit=True)
modify and store the run state or mark an error

Parameters

• state – set run state

• error – error message (if exist will set the state to error)

• commit – will immediately update the state in the DB

property tag

run tag (uid or workflow id if exists)

to_dict()

convert the run context to a dictionary

to_json()

convert the run context to a json buffer

to_yaml()

convert the run context to a yaml buffer

property uid

Unique run id

update_artifact(artifact_object)
update an artifact object in the cache and the DB

update_child_iterations(best_run=0, commit_children=False, completed=True)
update children results in the parent, and optionally mark the best

Parameters

• best_run – marks the child iteration number (starts from 1)

• commit_children – commit all child runs to the db

• completed – mark children as completed

41.8 mlrun.feature_store

class mlrun.feature_store.Entity(name: Optional[str] = None, value_type:
Optional[mlrun.data_types.data_types.ValueType] = None, description:
Optional[str] = None, labels: Optional[Dict[str, str]] = None)

Bases: mlrun.model.ModelObj

data entity (index)

data entity (index key)

Parameters

• name – entity name

• value_type – type of the entity, e.g. ValueType.STRING, ValueType.INT
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• description – test description of the entity

• labels – a set of key/value labels (tags)

class mlrun.feature_store.Feature(value_type: Optional[str] = None, dims: Optional[List[int]] = None,
description: Optional[str] = None, aggregate: Optional[bool] = None,
name: Optional[str] = None, validator=None, default: Optional[str] =
None, labels: Optional[Dict[str, str]] = None)

Bases: mlrun.model.ModelObj

data feature

data feature

Features can be specified manually or inferred automatically (during ingest/preview)

Parameters

• value_type – type of the feature. Use the ValueType constants library e.g. Value-
Type.STRING, ValueType.INT

• dims – list of dimensions for vectors/tensors, e.g. [2, 2]

• description – text description of the feature

• aggregate – is it an aggregated value

• name – name of the feature

• validator – feature validation policy

• default – default value

• labels – a set of key/value labels (tags)

property validator

class mlrun.feature_store.FeatureSet(name: Optional[str] = None, description: Optional[str] = None,
entities: Optional[List[Union[mlrun.features.Entity, str]]] = None,
timestamp_key: Optional[str] = None, engine: Optional[str] =
None, label_column: Optional[str] = None)

Bases: mlrun.model.ModelObj

Feature set object, defines a set of features and their data pipeline

Feature set object, defines a set of features and their data pipeline

example:

import mlrun.feature_store as fstore
ticks = fstore.FeatureSet("ticks", entities=["stock"], timestamp_key="timestamp")
fstore.ingest(ticks, df)

Parameters

• name – name of the feature set

• description – text description

• entities – list of entity (index key) names or Entity

• timestamp_key – timestamp column name

• engine – name of the processing engine (storey, pandas, or spark), defaults to storey
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• label_column – name of the label column (the one holding the target (y) values)

add_aggregation(column, operations, windows, period=None, name=None, step_name=None, after=None,
before=None, state_name=None, emit_policy: Optional[storey.dtypes.EmitPolicy] =
None)

add feature aggregation rule

example:

myset.add_aggregation("ask", ["sum", "max"], "1h", "10m", name="asks")

Parameters

• column – name of column/field aggregate. Do not name columns starting with either
_ or aggr_. They are reserved for internal use, and the data does not ingest correctly.
When using the pandas engine, do not use spaces (` ) or periods (.`) in the column
names; they cause errors in the ingestion.

• operations – aggregation operations, e.g. [‘sum’, ‘std’]

• windows – time windows, can be a single window, e.g. ‘1h’, ‘1d’, or a list of same
unit windows e.g. [‘1h’, ‘6h’] windows are transformed to fixed windows or sliding
windows depending whether period parameter provided.

– Sliding window is fixed-size overlapping windows that slides with time. The win-
dow size determines the size of the sliding window and the period determines the
step size to slide. Period must be integral divisor of the window size. If the period
is not provided then fixed windows is used.

– Fixed window is fixed-size, non-overlapping, gap-less window. The window is re-
ferred to as a tumbling window. In this case, each record on an in-application stream
belongs to a specific window. It is processed only once (when the query processes
the window to which the record belongs).

• period – optional, sliding window granularity, e.g. ’20s’ ‘10m’ ‘3h’ ‘7d’

• name – optional, aggregation name/prefix. Must be unique per feature set. If not
passed, the column will be used as name.

• step_name – optional, graph step name

• state_name – Deprecated - use step_name instead

• after – optional, after which graph step it runs

• before – optional, comes before graph step

• emit_policy – optional, which emit policy to use when performing the aggregations.
Use the derived classes of storey.EmitPolicy. The default is to emit every period
for Spark engine and emit every event for storey. Currently the only other supported
option is to use emit_policy=storey.EmitEveryEvent() when using the Spark
engine to emit every event

add_entity(name: str, value_type: Optional[mlrun.data_types.data_types.ValueType] = None, description:
Optional[str] = None, labels: Optional[Dict[str, str]] = None)

add/set an entity (dataset index)

example:
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import mlrun.feature_store as fstore

ticks = fstore.FeatureSet("ticks",
entities=["stock"],
timestamp_key="timestamp")

ticks.add_entity("country",
mlrun.data_types.ValueType.STRING,
description="stock country")

ticks.add_entity("year", mlrun.data_types.ValueType.INT16)
ticks.save()

Parameters

• name – entity name

• value_type – type of the entity (default to ValueType.STRING)

• description – description of the entity

• labels – label tags dict

add_feature(feature: mlrun.features.Feature, name=None)
add/set a feature

example:

import mlrun.feature_store as fstore
from mlrun.features import Feature

ticks = fstore.FeatureSet("ticks",
entities=["stock"],
timestamp_key="timestamp")

ticks.add_feature(Feature(value_type=mlrun.data_types.ValueType.STRING,
description="client consistency"),"ABC01")

ticks.add_feature(Feature(value_type=mlrun.data_types.ValueType.FLOAT,
description="client volatility"),"SAB")

ticks.save()

Parameters

• feature – setting of Feature

• name – feature name

property fullname: str

{tag}]

Type full name in the form {project}/{name}[

get_stats_table()

get feature statistics table (as dataframe)

get_target_path(name=None)
get the url/path for an offline or specified data target
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property graph

feature set transformation graph/DAG

has_valid_source()

check if object’s spec has a valid (non empty) source definition

kind = 'FeatureSet'

link_analysis(name, uri)
add a linked file/artifact (chart, data, ..)

property metadata: mlrun.model.VersionedObjMetadata

plot(filename=None, format=None, with_targets=False, **kw)
generate graphviz plot

purge_targets(target_names: Optional[List[str]] = None, silent: bool = False)
Delete data of specific targets :param target_names: List of names of targets to delete (default: delete all
ingested targets) :param silent: Fail silently if target doesn’t exist in featureset status

reload(update_spec=True)
reload/sync the feature vector status and spec from the DB

save(tag='', versioned=False)
save to mlrun db

set_targets(targets=None, with_defaults=True, default_final_step=None, default_final_state=None)
set the desired target list or defaults

Parameters

• targets – list of target type names (‘csv’, ‘nosql’, ..) or target objects CSVTarget(),
ParquetTarget(), NoSqlTarget(), StreamTarget(), ..

• with_defaults – add the default targets (as defined in the central config)

• default_final_step – the final graph step after which we add the target writers,
used when the graph branches and the end cant be determined automatically

• default_final_state – Deprecated - use default_final_step instead

property spec: mlrun.feature_store.feature_set.FeatureSetSpec

property status: mlrun.feature_store.feature_set.FeatureSetStatus

to_dataframe(columns=None, df_module=None, target_name=None, start_time=None, end_time=None,
time_column=None, **kwargs)

return featureset (offline) data as dataframe

Parameters

• columns – list of columns to select (if not all)

• df_module – py module used to create the DataFrame (pd for Pandas, dd for Dask, ..)

• target_name – select a specific target (material view)

• start_time – filter by start time

• end_time – filter by end time

• time_column – specify the time column name in the file
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• kwargs – additional reader (csv, parquet, ..) args

Returns DataFrame

update_targets_for_ingest(targets: List[mlrun.model.DataTargetBase], overwrite: Optional[bool] =
None)

property uri

fully qualified feature set uri

class mlrun.feature_store.FeatureVector(name=None, features=None, label_feature=None,
description=None, with_indexes=None)

Bases: mlrun.model.ModelObj

Feature vector, specify selected features, their metadata and material views

Feature vector, specify selected features, their metadata and material views

example:

import mlrun.feature_store as fstore
features = ["quotes.bid", "quotes.asks_sum_5h as asks_5h", "stocks.*"]
vector = fstore.FeatureVector("my-vec", features)

# get the vector as a dataframe
df = fstore.get_offline_features(vector).to_dataframe()

# return an online/real-time feature service
svc = fs.get_online_feature_service(vector, impute_policy={"*": "$mean"})
resp = svc.get([{"stock": "GOOG"}])

Parameters

• name – List of names of targets to delete (default: delete all ingested targets)

• features – list of feature to collect to this vector. format
[<project>/]<feature_set>.<feature_name or *> [as <alias>]

• label_feature – feature name to be used as label data

• description – text description of the vector

• with_indexes – whether to keep the entity and timestamp columns in the response

get_feature_aliases()

get_stats_table()

get feature statistics table (as dataframe)

get_target_path(name=None)

kind = 'FeatureVector'

link_analysis(name, uri)
add a linked file/artifact (chart, data, ..)

property metadata: mlrun.model.VersionedObjMetadata
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parse_features(offline=True, update_stats=False)
parse and validate feature list (from vector) and add metadata from feature sets

:returns feature_set_objects: cache of used feature set objects feature_set_fields: list of field (name, alias)
per featureset

reload(update_spec=True)
reload/sync the feature set status and spec from the DB

save(tag='', versioned=False)
save to mlrun db

property spec: mlrun.feature_store.feature_vector.FeatureVectorSpec

property status: mlrun.feature_store.feature_vector.FeatureVectorStatus

to_dataframe(df_module=None, target_name=None)
return feature vector (offline) data as dataframe

property uri

fully qualified feature vector uri

class mlrun.feature_store.FixedWindowType(value)
Bases: enum.Enum

An enumeration.

CurrentOpenWindow = 1

LastClosedWindow = 2

to_qbk_fixed_window_type()

class mlrun.feature_store.OfflineVectorResponse(merger)
Bases: object

get_offline_features response object

property status

vector prep job status (ready, running, error)

to_csv(target_path, **kw)
return results as csv file

to_dataframe(to_pandas=True)
return result as dataframe

to_parquet(target_path, **kw)
return results as parquet file

class mlrun.feature_store.OnlineVectorService(vector, graph, index_columns, impute_policy:
Optional[dict] = None)

Bases: object

get_online_feature_service response object

close()

terminate the async loop
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get(entity_rows: List[Union[dict, list]], as_list=False)
get feature vector given the provided entity inputs

take a list of input vectors/rows and return a list of enriched feature vectors each input and/or output vector
can be a list of values or a dictionary of field names and values, to return the vector as a list of values set
the as_list to True.

if the input is a list of list (vs a list of dict), the values in the list will correspond to the index/entity values,
i.e. [[“GOOG”], [“MSFT”]] means “GOOG” and “MSFT” are the index/entity fields.

example:

# accept list of dict, return list of dict
svc = fs.get_online_feature_service(vector)
resp = svc.get([{"name": "joe"}, {"name": "mike"}])

# accept list of list, return list of list
svc = fs.get_online_feature_service(vector, as_list=True)
resp = svc.get([["joe"], ["mike"]])

Parameters

• entity_rows – list of list/dict with input entity data/rows

• as_list – return a list of list (list input is required by many ML frameworks)

initialize()

internal, init the feature service and prep the imputing logic

property status

vector merger function status (ready, running, error)

class mlrun.feature_store.RunConfig(function: Optional[Union[str,
mlrun.runtimes.function_reference.FunctionReference,
mlrun.runtimes.base.BaseRuntime]] = None, local: Optional[bool] =
None, image: Optional[str] = None, kind: Optional[str] = None,
handler: Optional[str] = None, parameters: Optional[dict] = None,
watch: Optional[bool] = None, owner=None, credentials:
Optional[mlrun.model.Credentials] = None, code: Optional[str] =
None, requirements: Optional[Union[str, List[str]]] = None,
extra_spec: Optional[dict] = None, auth_info=None)

Bases: object

class for holding function and run specs for jobs and serving functions

class for holding function and run specs for jobs and serving functions

when running feature ingestion or merging tasks we use the RunConfig class to pass the desired function and job
configuration. the apply() method is used to set resources like volumes, the with_secret() method adds secrets

Most attributes are optional, if not specified a proper default value will be set

examples:

# config for local run emulation
config = RunConfig(local=True)

# config for using empty/default code
(continues on next page)
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(continued from previous page)

config = RunConfig()

# config for using .py/.ipynb file with image and extra package requirements
config = RunConfig("mycode.py", image="mlrun/mlrun", requirements=["spacy"])

# config for using function object
function = mlrun.import_function("hub://some_function")
config = RunConfig(function)

Parameters

• function – this can be function uri or function object or path to function code (.py/.ipynb)
or a FunctionReference the function define the code, dependencies, and resources

• local – use True to simulate local job run or mock service

• image – function container image

• kind – function runtime kind (job, serving, spark, ..), required when function points to
code

• handler – the function handler to execute (for jobs or nuclio)

• parameters – job parameters

• watch – in batch jobs will wait for the job completion and print job logs to the console

• owner – job owner

• credentials – job credentials

• code – function source code (as string)

• requirements – python requirements file path or list of packages

• extra_spec – additional dict with function spec fields/values to add to the function

• auth_info – authentication info. For internal use when running on server

apply(modifier)
apply a modifier to add/set function resources like volumes

example:

run_config.apply(mlrun.platforms.auto_mount())

copy()

property function

to_function(default_kind=None, default_image=None)
internal, generate function object

with_secret(kind, source)
register a secrets source (file, env or dict)

read secrets from a source provider to be used in jobs, example:
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run_config.with_secrets('file', 'file.txt')
run_config.with_secrets('inline', {'key': 'val'})
run_config.with_secrets('env', 'ENV1,ENV2')
run_config.with_secrets('vault', ['secret1', 'secret2'...])

Parameters

• kind – secret type (file, inline, env, vault)

• source – secret data or link (see example)

Returns This (self) object

mlrun.feature_store.delete_feature_set(name, project='', tag=None, uid=None, force=False)
Delete a FeatureSet object from the DB. :param name: Name of the object to delete :param project: Name
of the object’s project :param tag: Specific object’s version tag :param uid: Specific object’s uid :param force:
Delete feature set without purging its targets

If tag or uid are specified, then just the version referenced by them will be deleted. Using both is not al-
lowed. If none are specified, then all instances of the object whose name is name will be deleted.

mlrun.feature_store.delete_feature_vector(name, project='', tag=None, uid=None)
Delete a FeatureVector object from the DB. :param name: Name of the object to delete :param project: Name
of the object’s project :param tag: Specific object’s version tag :param uid: Specific object’s uid

If tag or uid are specified, then just the version referenced by them will be deleted. Using both is not al-
lowed. If none are specified, then all instances of the object whose name is name will be deleted.

mlrun.feature_store.deploy_ingestion_service(featureset:
Union[mlrun.feature_store.feature_set.FeatureSet, str],
source: Optional[mlrun.model.DataSource] = None,
targets: Optional[List[mlrun.model.DataTargetBase]] =
None, name: Optional[str] = None, run_config:
Optional[mlrun.feature_store.common.RunConfig] =
None, verbose=False)

Start real-time ingestion service using nuclio function

Deploy a real-time function implementing feature ingestion pipeline the source maps to Nuclio event triggers
(http, kafka, v3io stream, etc.)

the run_config parameter allow specifying the function and job configuration, see: RunConfig

example:

source = HTTPSource()
func = mlrun.code_to_function("ingest", kind="serving").apply(mount_v3io())
config = RunConfig(function=func)
fs.deploy_ingestion_service(my_set, source, run_config=config)

Parameters

• featureset – feature set object or uri

• source – data source object describing the online or offline source

• targets – list of data target objects

• name – name for the job/function
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• run_config – service runtime configuration (function object/uri, resources, etc..)

• verbose – verbose log

mlrun.feature_store.get_feature_set(uri, project=None)
get feature set object from the db

Parameters

• uri – a feature set uri({project}/{name}[:version])

• project – project name if not specified in uri or not using the current/default

mlrun.feature_store.get_feature_vector(uri, project=None)
get feature vector object from the db

Parameters

• uri – a feature vector uri({project}/{name}[:version])

• project – project name if not specified in uri or not using the current/default

mlrun.feature_store.get_offline_features(feature_vector: Union[str,
mlrun.feature_store.feature_vector.FeatureVector],
entity_rows=None, entity_timestamp_column: Optional[str] =
None, target: Optional[mlrun.model.DataTargetBase] = None,
run_config:
Optional[mlrun.feature_store.common.RunConfig] = None,
drop_columns: Optional[List[str]] = None, start_time:
Optional[Union[str,
pandas._libs.tslibs.timestamps.Timestamp]] = None, end_time:
Optional[Union[str,
pandas._libs.tslibs.timestamps.Timestamp]] = None,
with_indexes: bool = False, update_stats: bool = False,
engine: Optional[str] = None, engine_args: Optional[dict] =
None, query: Optional[str] = None)→
mlrun.feature_store.feature_vector.OfflineVectorResponse

retrieve offline feature vector results

specify a feature vector object/uri and retrieve the desired features, their metadata and statistics. returns
OfflineVectorResponse, results can be returned as a dataframe or written to a target

The start_time and end_time attributes allow filtering the data to a given time range, they accept string values
or pandas Timestamp objects, string values can also be relative, for example: “now”, “now - 1d2h”, “now+5m”,
where a valid pandas Timedelta string follows the verb “now”, for time alignment you can use the verb “floor”
e.g. “now -1d floor 1H” will align the time to the last hour (the floor string is passed to pandas.Timestamp.floor(),
can use D, H, T, S for day, hour, min, sec alignment). Another option to filter the data is by the query argument
- can be seen in the example. example:

features = [
"stock-quotes.bid",
"stock-quotes.asks_sum_5h",
"stock-quotes.ask as mycol",
"stocks.*",

]
vector = FeatureVector(features=features)
resp = get_offline_features(

vector, entity_rows=trades, entity_timestamp_column="time", query="ticker in [
→˓'GOOG'] and bid>100" (continues on next page)
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(continued from previous page)

)
print(resp.to_dataframe())
print(vector.get_stats_table())
resp.to_parquet("./out.parquet")

Parameters

• feature_vector – feature vector uri or FeatureVector object. passing feature vector obj
requires update permissions

• entity_rows – dataframe with entity rows to join with

• target – where to write the results to

• drop_columns – list of columns to drop from the final result

• entity_timestamp_column – timestamp column name in the entity rows dataframe

• run_config – function and/or run configuration see RunConfig

• start_time – datetime, low limit of time needed to be filtered. Optional. en-
tity_timestamp_column must be passed when using time filtering.

• end_time – datetime, high limit of time needed to be filtered. Optional. en-
tity_timestamp_column must be passed when using time filtering.

• with_indexes – return vector with index columns and timestamp_key from the feature
sets (default False)

• update_stats – update features statistics from the requested feature sets on the vector.
Default is False.

• engine – processing engine kind (“local”, “dask”, or “spark”)

• engine_args – kwargs for the processing engine

• query – The query string used to filter rows

mlrun.feature_store.get_online_feature_service(feature_vector: Union[str,
mlrun.feature_store.feature_vector.FeatureVector],
run_config:
Optional[mlrun.feature_store.common.RunConfig] =
None, fixed_window_type:
mlrun.feature_store.feature_vector.FixedWindowType
= FixedWindowType.LastClosedWindow,
impute_policy: Optional[dict] = None, update_stats:
bool = False)→
mlrun.feature_store.feature_vector.OnlineVectorService

initialize and return online feature vector service api, returns OnlineVectorService

There are two ways to use the function 1. As context manager

example:

with get_online_feature_service(vector_uri) as svc:
resp = svc.get([{"ticker": "GOOG"}, {"ticker": "MSFT"}])
print(resp)
resp = svc.get([{"ticker": "AAPL"}], as_list=True)
print(resp)

(continues on next page)
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(continued from previous page)

example with imputing::

with get_online_feature_service(vector_uri, impute_policy={"*": "$mean
→˓", "amount": 0)) as svc:

resp = svc.get([{"id": "C123487"}])

2. as simple function, note that in that option you need to close the session. example:

svc = get_online_feature_service(vector_uri)
try:

resp = svc.get([{"ticker": "GOOG"}, {"ticker": "MSFT"}])
print(resp)
resp = svc.get([{"ticker": "AAPL"}], as_list=True)
print(resp)

finally:
svc.close()

example with imputing:

svc = get_online_feature_service(vector_uri, impute_policy={"*": "$mean",
→˓"amount": 0))
try:

resp = svc.get([{"id": "C123487"}])
except Exception as e:

handling exception...
finally:

svc.close()

Parameters

• feature_vector – feature vector uri or FeatureVector object. passing feature vector obj
requires update permissions

• run_config – function and/or run configuration for remote jobs/services

• impute_policy – a dict with impute_policy per feature, the dict key is the feature name
and the dict value indicate which value will be used in case the feature is NaN/empty,
the replaced value can be fixed number for constants or $mean, $max, $min, $std, $count
for statistical values. “*” is used to specify the default for all features, example: {“*”:
“$mean”}

• fixed_window_type – determines how to query the fixed window values which were
previously inserted by ingest

• update_stats – update features statistics from the requested feature sets on the vector.
Default is False.
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mlrun.feature_store.ingest(featureset: Optional[Union[mlrun.feature_store.feature_set.FeatureSet, str]] =
None, source=None, targets: Optional[List[mlrun.model.DataTargetBase]] =
None, namespace=None, return_df: bool = True, infer_options:
mlrun.data_types.data_types.InferOptions = 63, run_config:
Optional[mlrun.feature_store.common.RunConfig] = None,
mlrun_context=None, spark_context=None, overwrite=None)→
Optional[pandas.core.frame.DataFrame]

Read local DataFrame, file, URL, or source into the feature store Ingest reads from the source, run the graph
transformations, infers metadata and stats and writes the results to the default of specified targets

when targets are not specified data is stored in the configured default targets (will usually be NoSQL for real-time
and Parquet for offline).

the run_config parameter allow specifying the function and job configuration, see: RunConfig

example:

stocks_set = FeatureSet("stocks", entities=[Entity("ticker")])
stocks = pd.read_csv("stocks.csv")
df = ingest(stocks_set, stocks, infer_options=fstore.InferOptions.default())

# for running as remote job
config = RunConfig(image='mlrun/mlrun')
df = ingest(stocks_set, stocks, run_config=config)

# specify source and targets
source = CSVSource("mycsv", path="measurements.csv")
targets = [CSVTarget("mycsv", path="./mycsv.csv")]
ingest(measurements, source, targets)

Parameters

• featureset – feature set object or featureset.uri. (uri must be of a feature set that is in
the DB, call .save() if it’s not)

• source – source dataframe or other sources (e.g. parquet source see: ParquetSource
and other classes in mlrun.datastore with suffix Source)

• targets – optional list of data target objects

• namespace – namespace or module containing graph classes

• return_df – indicate if to return a dataframe with the graph results

• infer_options – schema and stats infer options

• run_config – function and/or run configuration for remote jobs, see RunConfig

• mlrun_context – mlrun context (when running as a job), for internal use !

• spark_context – local spark session for spark ingestion, example for creating the spark
context: spark = SparkSession.builder.appName(“Spark function”).getOrCreate() For re-
mote spark ingestion, this should contain the remote spark service name

• overwrite – delete the targets’ data prior to ingestion (default: True for non scheduled
ingest - deletes the targets that are about to be ingested.

False for scheduled ingest - does not delete the target)

Returns if return_df is True, a dataframe will be returned based on the graph
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mlrun.feature_store.preview(featureset: mlrun.feature_store.feature_set.FeatureSet, source, entity_columns:
Optional[list] = None, timestamp_key: Optional[str] = None,
namespace=None, options:
Optional[mlrun.data_types.data_types.InferOptions] = None, verbose: bool =
False, sample_size: Optional[int] = None)→ pandas.core.frame.DataFrame

run the ingestion pipeline with local DataFrame/file data and infer features schema and stats

example:

quotes_set = FeatureSet("stock-quotes", entities=[Entity("ticker")])
quotes_set.add_aggregation("ask", ["sum", "max"], ["1h", "5h"], "10m")
quotes_set.add_aggregation("bid", ["min", "max"], ["1h"], "10m")
df = preview(

quotes_set,
quotes_df,
entity_columns=["ticker"],
timestamp_key="time",

)

Parameters

• featureset – feature set object or uri

• source – source dataframe or csv/parquet file path

• entity_columns – list of entity (index) column names

• timestamp_key – timestamp column name

• namespace – namespace or module containing graph classes

• options – schema and stats infer options (InferOptions)

• verbose – verbose log

• sample_size – num of rows to sample from the dataset (for large datasets)

class mlrun.feature_store.steps.DateExtractor(parts: Union[Dict[str, str], List[str]], timestamp_col:
Optional[str] = None, **kwargs)

Date Extractor allows you to extract a date-time component

Date Extractor extract a date-time component into new columns

The extracted date part will appear as <timestamp_col>_<date_part> feature.

Supports part values:

• asm8: Return numpy datetime64 format in nanoseconds.

• day_of_week: Return day of the week.

• day_of_year: Return the day of the year.

• dayofweek: Return day of the week.

• dayofyear: Return the day of the year.

• days_in_month: Return the number of days in the month.

• daysinmonth: Return the number of days in the month.

• freqstr: Return the total number of days in the month.
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• is_leap_year: Return True if year is a leap year.

• is_month_end: Return True if date is last day of month.

• is_month_start: Return True if date is first day of month.

• is_quarter_end: Return True if date is last day of the quarter.

• is_quarter_start: Return True if date is first day of the quarter.

• is_year_end: Return True if date is last day of the year.

• is_year_start: Return True if date is first day of the year.

• quarter: Return the quarter of the year.

• tz: Alias for tzinfo.

• week: Return the week number of the year.

• weekofyear: Return the week number of the year.

example:

# (taken from the fraud-detection end-to-end feature store demo)
# Define the Transactions FeatureSet
transaction_set = fs.FeatureSet("transactions",

entities=[fs.Entity("source")],
timestamp_key='timestamp',
description="transactions feature set")

# Get FeatureSet computation graph
transaction_graph = transaction_set.graph

# Add the custom `DateExtractor` step
# to the computation graph
transaction_graph.to(

class_name='DateExtractor',
name='Extract Dates',
parts = ['hour', 'day_of_week'],
timestamp_col = 'timestamp',

)

Parameters

• parts – list of pandas style date-time parts you want to extract.

• timestamp_col – The name of the column containing the timestamps to extract from,
by default “timestamp”

__init__(parts: Union[Dict[str, str], List[str]], timestamp_col: Optional[str] = None, **kwargs)
Date Extractor extract a date-time component into new columns

The extracted date part will appear as <timestamp_col>_<date_part> feature.

Supports part values:

• asm8: Return numpy datetime64 format in nanoseconds.

• day_of_week: Return day of the week.

• day_of_year: Return the day of the year.
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• dayofweek: Return day of the week.

• dayofyear: Return the day of the year.

• days_in_month: Return the number of days in the month.

• daysinmonth: Return the number of days in the month.

• freqstr: Return the total number of days in the month.

• is_leap_year: Return True if year is a leap year.

• is_month_end: Return True if date is last day of month.

• is_month_start: Return True if date is first day of month.

• is_quarter_end: Return True if date is last day of the quarter.

• is_quarter_start: Return True if date is first day of the quarter.

• is_year_end: Return True if date is last day of the year.

• is_year_start: Return True if date is first day of the year.

• quarter: Return the quarter of the year.

• tz: Alias for tzinfo.

• week: Return the week number of the year.

• weekofyear: Return the week number of the year.

example:

# (taken from the fraud-detection end-to-end feature store demo)
# Define the Transactions FeatureSet
transaction_set = fs.FeatureSet("transactions",

entities=[fs.Entity("source")],
timestamp_key='timestamp',
description="transactions feature set")

# Get FeatureSet computation graph
transaction_graph = transaction_set.graph

# Add the custom `DateExtractor` step
# to the computation graph
transaction_graph.to(

class_name='DateExtractor',
name='Extract Dates',
parts = ['hour', 'day_of_week'],
timestamp_col = 'timestamp',

)

Parameters

• parts – list of pandas style date-time parts you want to extract.

• timestamp_col – The name of the column containing the timestamps to extract from,
by default “timestamp”
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class mlrun.feature_store.steps.FeaturesetValidator(featureset=None, columns=None, name=None,
**kwargs)

Validate feature values according to the feature set validation policy

Validate feature values according to the feature set validation policy

Parameters

• featureset – feature set uri (or “.” for current feature set pipeline)

• columns – names of the columns/fields to validate

• name – step name

• kwargs – optional kwargs (for storey)

__init__(featureset=None, columns=None, name=None, **kwargs)
Validate feature values according to the feature set validation policy

Parameters

• featureset – feature set uri (or “.” for current feature set pipeline)

• columns – names of the columns/fields to validate

• name – step name

• kwargs – optional kwargs (for storey)

class mlrun.feature_store.steps.Imputer(method: str = 'avg', default_value=None, mapping:
Optional[Dict[str, Dict[str, Any]]] = None, **kwargs)

Replace None values with default values

Parameters

• method – for future use

• default_value – default value if not specified per column

• mapping – a dict of per column default value

• kwargs – optional kwargs (for storey)

__init__(method: str = 'avg', default_value=None, mapping: Optional[Dict[str, Dict[str, Any]]] = None,
**kwargs)

Replace None values with default values

Parameters

• method – for future use

• default_value – default value if not specified per column

• mapping – a dict of per column default value

• kwargs – optional kwargs (for storey)

class mlrun.feature_store.steps.MapValues(mapping: Dict[str, Dict[str, Any]], with_original_features:
bool = False, suffix: str = 'mapped', **kwargs)

Map column values to new values

Map column values to new values

example:
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# replace the value "U" with '0' in the age column
graph.to(MapValues(mapping={'age': {'U': '0'}}, with_original_features=True))

# replace integers, example
graph.to(MapValues(mapping={'not': {0: 1, 1: 0}}))

# replace by range, use -inf and inf for extended range
graph.to(MapValues(mapping={'numbers': {'ranges': {'negative': [-inf, 0], 'positive
→˓': [0, inf]}}}))

Parameters

• mapping – a dict with entry per column and the associated old/new values map

• with_original_features – set to True to keep the original features

• suffix – the suffix added to the column name <column>_<suffix> (default is “mapped”)

• kwargs – optional kwargs (for storey)

__init__(mapping: Dict[str, Dict[str, Any]], with_original_features: bool = False, suffix: str = 'mapped',
**kwargs)

Map column values to new values

example:

# replace the value "U" with '0' in the age column
graph.to(MapValues(mapping={'age': {'U': '0'}}, with_original_features=True))

# replace integers, example
graph.to(MapValues(mapping={'not': {0: 1, 1: 0}}))

# replace by range, use -inf and inf for extended range
graph.to(MapValues(mapping={'numbers': {'ranges': {'negative': [-inf, 0],
→˓'positive': [0, inf]}}}))

Parameters

• mapping – a dict with entry per column and the associated old/new values map

• with_original_features – set to True to keep the original features

• suffix – the suffix added to the column name <column>_<suffix> (default is
“mapped”)

• kwargs – optional kwargs (for storey)

class mlrun.feature_store.steps.OneHotEncoder(mapping: Dict[str, Union[int, str]], **kwargs)
Create new binary fields, one per category (one hot encoded)

example:

mapping = {'category': ['food', 'health', 'transportation'],
'gender': ['male', 'female']}

graph.to(OneHotEncoder(mapping=one_hot_encoder_mapping))

Parameters
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• mapping – a dict of per column categories (to map to binary fields)

• kwargs – optional kwargs (for storey)

__init__(mapping: Dict[str, Union[int, str]], **kwargs)
Create new binary fields, one per category (one hot encoded)

example:

mapping = {'category': ['food', 'health', 'transportation'],
'gender': ['male', 'female']}

graph.to(OneHotEncoder(mapping=one_hot_encoder_mapping))

Parameters

• mapping – a dict of per column categories (to map to binary fields)

• kwargs – optional kwargs (for storey)

class mlrun.feature_store.steps.SetEventMetadata(id_path: Optional[str] = None, key_path:
Optional[str] = None, time_path: Optional[str] =
None, random_id: Optional[bool] = None,
**kwargs)

Set the event metadata (id, key, timestamp) from the event body

Set the event metadata (id, key, timestamp) from the event body

set the event metadata fields (id, key, and time) from the event body data structure the xx_path attribute defines
the key or path to the value in the body dict, “.” in the path string indicate the value is in a nested dict e.g. “x.y”
means {“x”: {“y”: value}}

example:

flow = function.set_topology("flow")
# build a graph and use the SetEventMetadata step to extract the id, key and path␣
→˓from the event body
# ("myid", "mykey" and "mytime" fields), the metadata will be used for following␣
→˓data processing steps
# (e.g. feature store ops, time/key aggregations, write to databases/streams, etc.)
flow.to(SetEventMetadata(id_path="myid", key_path="mykey", time_path="mytime"))

.to(...) # additional steps

server = function.to_mock_server()
event = {"myid": "34", "mykey": "123", "mytime": "2022-01-18 15:01"}
resp = server.test(body=event)

Parameters

• id_path – path to the id value

• key_path – path to the key value

• time_path – path to the time value (value should be of type str or datetime)

• random_id – if True will set the event.id to a random value
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__init__(id_path: Optional[str] = None, key_path: Optional[str] = None, time_path: Optional[str] = None,
random_id: Optional[bool] = None, **kwargs)

Set the event metadata (id, key, timestamp) from the event body

set the event metadata fields (id, key, and time) from the event body data structure the xx_path attribute
defines the key or path to the value in the body dict, “.” in the path string indicate the value is in a nested
dict e.g. “x.y” means {“x”: {“y”: value}}

example:

flow = function.set_topology("flow")
# build a graph and use the SetEventMetadata step to extract the id, key and␣
→˓path from the event body
# ("myid", "mykey" and "mytime" fields), the metadata will be used for␣
→˓following data processing steps
# (e.g. feature store ops, time/key aggregations, write to databases/streams,␣
→˓etc.)
flow.to(SetEventMetadata(id_path="myid", key_path="mykey", time_path="mytime"))

.to(...) # additional steps

server = function.to_mock_server()
event = {"myid": "34", "mykey": "123", "mytime": "2022-01-18 15:01"}
resp = server.test(body=event)

Parameters

• id_path – path to the id value

• key_path – path to the key value

• time_path – path to the time value (value should be of type str or datetime)

• random_id – if True will set the event.id to a random value

41.9 mlrun.model

class mlrun.model.DataSource(name: Optional[str] = None, path: Optional[str] = None, attributes:
Optional[Dict[str, str]] = None, key_field: Optional[str] = None, time_field:
Optional[str] = None, schedule: Optional[str] = None, start_time:
Optional[Union[datetime.datetime, str]] = None, end_time:
Optional[Union[datetime.datetime, str]] = None)

Bases: mlrun.model.ModelObj

online or offline data source spec

class mlrun.model.DataTarget(kind: Optional[str] = None, name: str = '', path=None, online=None)
Bases: mlrun.model.DataTargetBase

data target with extra status information (used in the feature-set/vector status)

class mlrun.model.DataTargetBase(kind: Optional[str] = None, name: str = '', path=None, attributes:
Optional[Dict[str, str]] = None, after_step=None, partitioned: bool =
False, key_bucketing_number: Optional[int] = None, partition_cols:
Optional[List[str]] = None, time_partitioning_granularity: Optional[str]
= None, max_events: Optional[int] = None, flush_after_seconds:
Optional[int] = None, after_state=None, storage_options:
Optional[Dict[str, str]] = None)
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Bases: mlrun.model.ModelObj

data target spec, specify a destination for the feature set data

classmethod from_dict(struct=None, fields=None)
create an object from a python dictionary

class mlrun.model.FeatureSetProducer(kind=None, name=None, uri=None, owner=None, sources=None)
Bases: mlrun.model.ModelObj

information about the task/job which produced the feature set data

class mlrun.model.HyperParamOptions(param_file=None, strategy=None, selector:
Optional[mlrun.model.HyperParamStrategies] = None,
stop_condition=None, parallel_runs=None, dask_cluster_uri=None,
max_iterations=None, max_errors=None, teardown_dask=None)

Bases: mlrun.model.ModelObj

Hyper Parameter Options

Parameters

• param_file (str) – hyper params input file path/url, instead of inline

• strategy (str) – hyper param strategy - grid, list or random

• selector (str) – selection criteria for best result ([min|max.]<result>), e.g.
max.accuracy

• stop_condition (str) – early stop condition e.g. “accuracy > 0.9”

• parallel_runs (int) – number of param combinations to run in parallel (over Dask)

• dask_cluster_uri (str) – db uri for a deployed dask cluster function, e.g.
db://myproject/dask

• max_iterations (int) – max number of runs (in random strategy)

• max_errors (int) – max number of child runs errors for the overall job to fail

• teardown_dask (bool) – kill the dask cluster pods after the runs

mlrun.model.NewTask(name=None, project=None, handler=None, params=None, hyper_params=None,
param_file=None, selector=None, strategy=None, inputs=None, outputs=None,
in_path=None, out_path=None, artifact_path=None, secrets=None, base=None)

Creates a new task - see new_task

class mlrun.model.RunMetadata(uid=None, name=None, project=None, labels=None, annotations=None,
iteration=None)

Bases: mlrun.model.ModelObj

Run metadata

class mlrun.model.RunObject(spec: Optional[mlrun.model.RunSpec] = None, metadata:
Optional[mlrun.model.RunMetadata] = None, status:
Optional[mlrun.model.RunStatus] = None)

Bases: mlrun.model.RunTemplate

A run
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artifact(key)→ mlrun.datastore.base.DataItem
return artifact DataItem by key

logs(watch=True, db=None)
return or watch on the run logs

output(key)
return the value of a specific result or artifact by key

property outputs

return a dict of outputs, result values and artifact uris

refresh()

refresh run state from the db

show()

show the current status widget, in jupyter notebook

state()

current run state

property ui_url: str

UI URL (for relevant runtimes)

uid()

run unique id

wait_for_completion(sleep=3, timeout=0, raise_on_failure=True)
wait for async run to complete

class mlrun.model.RunSpec(parameters=None, hyperparams=None, param_file=None, selector=None,
handler=None, inputs=None, outputs=None, input_path=None,
output_path=None, function=None, secret_sources=None, data_stores=None,
strategy=None, verbose=None, scrape_metrics=None,
hyper_param_options=None, allow_empty_resources=None)

Bases: mlrun.model.ModelObj

Run specification

to_dict(fields=None, exclude=None)
convert the object to a python dictionary

class mlrun.model.RunStatus(state=None, error=None, host=None, commit=None, status_text=None,
results=None, artifacts=None, start_time=None, last_update=None,
iterations=None, ui_url=None)

Bases: mlrun.model.ModelObj

Run status

class mlrun.model.RunTemplate(spec: Optional[mlrun.model.RunSpec] = None, metadata:
Optional[mlrun.model.RunMetadata] = None)

Bases: mlrun.model.ModelObj

Run template

set_label(key, value)
set a key/value label for the task
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with_hyper_params(hyperparams, selector=None, strategy: Optional[mlrun.model.HyperParamStrategies]
= None, **options)

set hyper param values and configurations, see parameters in: HyperParamOptions

example:

grid_params = {"p1": [2,4,1], "p2": [10,20]}
task = mlrun.new_task("grid-search")
task.with_hyper_params(grid_params, selector="max.accuracy")

with_input(key, path)
set task data input, path is an Mlrun global DataItem uri

examples:

task.with_input("data", "/file-dir/path/to/file")
task.with_input("data", "s3://<bucket>/path/to/file")
task.with_input("data", "v3io://[<remote-host>]/<data-container>/path/to/file")

with_param_file(param_file, selector=None, strategy: Optional[mlrun.model.HyperParamStrategies] =
None, **options)

set hyper param values (from a file url) and configurations, see parameters in: HyperParamOptions

example:

grid_params = "s3://<my-bucket>/path/to/params.json"
task = mlrun.new_task("grid-search")
task.with_param_file(grid_params, selector="max.accuracy")

with_params(**kwargs)
set task parameters using key=value, key2=value2, ..

with_secrets(kind, source)
register a secrets source (file, env or dict)

read secrets from a source provider to be used in workflows, example:

task.with_secrets('file', 'file.txt')
task.with_secrets('inline', {'key': 'val'})
task.with_secrets('env', 'ENV1,ENV2')

task.with_secrets('vault', ['secret1', 'secret2'...])

# If using with k8s secrets, the k8s secret is managed by MLRun, through the␣
→˓project-secrets
# mechanism. The secrets will be attached to the running pod as environment␣
→˓variables.
task.with_secrets('kubernetes', ['secret1', 'secret2'])

# If using an empty secrets list [] then all accessible secrets will be␣
→˓available.
task.with_secrets('vault', [])

# To use with Azure key vault, a k8s secret must be created with the following␣
→˓keys:

(continues on next page)
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(continued from previous page)

# kubectl -n <namespace> create secret generic azure-key-vault-secret \
# --from-literal=tenant_id=<service principal tenant ID> \
# --from-literal=client_id=<service principal client ID> \
# --from-literal=secret=<service principal secret key>

task.with_secrets('azure_vault', {
'name': 'my-vault-name',
'k8s_secret': 'azure-key-vault-secret',
# An empty secrets list may be passed ('secrets': []) to access all vault␣

→˓secrets.
'secrets': ['secret1', 'secret2'...]

})

Parameters

• kind – secret type (file, inline, env)

• source – secret data or link (see example)

Returns The RunTemplate object

class mlrun.model.TargetPathObject(base_path=None, run_id=None, is_single_file=False)
Bases: object

Class configuring the target path This class will take consideration of a few parameters to create the correct end
result path: * run_id - if run_id is provided target will be considered as run_id mode

which require to contain a {run_id} place holder in the path.

• is_single_file - if true then run_id must be the directory containing the output file or generated be-
fore the file name (run_id/output.file).

• base_path - if contains the place holder for run_id, run_id must not be None. if run_id passed and
place holder doesn’t exist the place holder will be generated in the correct place.

mlrun.model.new_task(name=None, project=None, handler=None, params=None, hyper_params=None,
param_file=None, selector=None, hyper_param_options=None, inputs=None,
outputs=None, in_path=None, out_path=None, artifact_path=None, secrets=None,
base=None)→ mlrun.model.RunTemplate

Creates a new task

Parameters

• name – task name

• project – task project

• handler – code entry-point/handler name

• params – input parameters (dict)

• hyper_params – dictionary of hyper parameters and list values, each hyper param holds
a list of values, the run will be executed for every parameter combination (GridSearch)

• param_file – a csv file with parameter combinations, first row hold the parameter names,
following rows hold param values

• selector – selection criteria for hyper params e.g. “max.accuracy”

446 Chapter 41. API by module



mlrun, Release UNKNOWN

• hyper_param_options – hyper parameter options, see: HyperParamOptions

• inputs – dictionary of input objects + optional paths (if path is omitted the path will be
the in_path/key)

• outputs – dictionary of input objects + optional paths (if path is omitted the path will be
the out_path/key)

• in_path – default input path/url (prefix) for inputs

• out_path – default output path/url (prefix) for artifacts

• artifact_path – default artifact output path

• secrets – extra secrets specs, will be injected into the runtime e.g. [‘file=<filename>’,
‘env=ENV_KEY1,ENV_KEY2’]

• base – task instance to use as a base instead of a fresh new task instance

41.10 mlrun.platforms

mlrun.platforms.VolumeMount

alias of mlrun.platforms.iguazio.Mount

mlrun.platforms.auto_mount(pvc_name='', volume_mount_path='', volume_name=None)
choose the mount based on env variables and params

volume will be selected by the following order: - k8s PVC volume when both pvc_name and volume_mount_path
are set - k8s PVC volume when env var is set: MLRUN_PVC_MOUNT=<pvc-name>:<mount-path> - k8s
PVC volume if it’s configured as the auto mount type - iguazio v3io volume when V3IO_ACCESS_KEY and
V3IO_USERNAME env vars are set

mlrun.platforms.mount_configmap(configmap_name, mount_path, volume_name='configmap', items=None)
Modifier function to mount kubernetes configmap as files(s)

Parameters

• configmap_name – k8s configmap name

• mount_path – path to mount inside the container

• volume_name – unique volume name

• items – If unspecified, each key-value pair in the Data field of the referenced Configmap
will be projected into the volume as a file whose name is the key and content is the value.
If specified, the listed keys will be projected into the specified paths, and unlisted keys
will not be present.

mlrun.platforms.mount_hostpath(host_path, mount_path, volume_name='hostpath')
Modifier function to mount kubernetes configmap as files(s)

Parameters

• host_path – host path

• mount_path – path to mount inside the container

• volume_name – unique volume name
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mlrun.platforms.mount_pvc(pvc_name=None, volume_name='pipeline', volume_mount_path='/mnt/pipeline')
Modifier function to apply to a Container Op to simplify volume, volume mount addition and enable better reuse
of volumes, volume claims across container ops.

Usage:

train = train_op(...)
train.apply(mount_pvc('claim-name', 'pipeline', '/mnt/pipeline'))

mlrun.platforms.mount_s3(secret_name=None, aws_access_key='', aws_secret_key='', endpoint_url=None,
prefix='', aws_region=None, non_anonymous=False)

Modifier function to add s3 env vars or secrets to container

Parameters

• secret_name – kubernetes secret name (storing the access/secret keys)

• aws_access_key – AWS_ACCESS_KEY_ID value

• aws_secret_key – AWS_SECRET_ACCESS_KEY value

• endpoint_url – s3 endpoint address (for non AWS s3)

• prefix – string prefix to add before the env var name (for working with multiple s3 data
stores)

• aws_region – amazon region

• non_anonymous – force the S3 API to use non-anonymous connection, even if no cre-
dentials are provided (for authenticating externally, such as through IAM instance-roles)

Returns

mlrun.platforms.mount_secret(secret_name, mount_path, volume_name='secret', items=None)
Modifier function to mount kubernetes secret as files(s)

Parameters

• secret_name – k8s secret name

• mount_path – path to mount inside the container

• volume_name – unique volume name

• items – If unspecified, each key-value pair in the Data field of the referenced Secret will
be projected into the volume as a file whose name is the key and content is the value. If
specified, the listed keys will be projected into the specified paths, and unlisted keys will
not be present.

mlrun.platforms.mount_v3io(name='v3io', remote='', mount_path='', access_key='', user='', secret=None,
volume_mounts=None)

Modifier function to apply to a Container Op to volume mount a v3io path

Parameters

• name – the volume name

• remote – the v3io path to use for the volume. ~/ prefix will be replaced with
/users/<username>/

• mount_path – the volume mount path (deprecated, exists for backwards compatibility,
prefer to use mounts instead)
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• access_key – the access key used to auth against v3io. if not given
V3IO_ACCESS_KEY env var will be used

• user – the username used to auth against v3io. if not given V3IO_USERNAME env var
will be used

• secret – k8s secret name which would be used to get the username and access key to
auth against v3io.

• volume_mounts – list of VolumeMount. empty volume mounts & remote will default to
mount /v3io & /User.

mlrun.platforms.mount_v3io_extended(name='v3io', remote='', mounts=None, access_key='', user='',
secret=None)

Modifier function to apply to a Container Op to volume mount a v3io path

Parameters

• name – the volume name

• remote – the v3io path to use for the volume. ~/ prefix will be replaced with
/users/<username>/

• mounts – list of mount & volume sub paths (type Mount). empty mounts & remote mount
/v3io & /User

• access_key – the access key used to auth against v3io. if not given
V3IO_ACCESS_KEY env var will be used

• user – the username used to auth against v3io. if not given V3IO_USERNAME env var
will be used

• secret – k8s secret name which would be used to get the username and access key to
auth against v3io.

mlrun.platforms.mount_v3io_legacy(name='v3io', remote='~/', mount_path='/User', access_key='', user='',
secret=None)

Modifier function to apply to a Container Op to volume mount a v3io path :param name: the volume name
:param remote: the v3io path to use for the volume. ~/ prefix will be replaced with /users/<username>/ :param
mount_path: the volume mount path :param access_key: the access key used to auth against v3io. if not given
V3IO_ACCESS_KEY env var will be used :param user: the username used to auth against v3io. if not given
V3IO_USERNAME env var will be used :param secret: k8s secret name which would be used to get the username
and access key to auth against v3io.

mlrun.platforms.pprint(object, stream=None, indent=1, width=80, depth=None, *, compact=False)
Pretty-print a Python object to a stream [default is sys.stdout].

mlrun.platforms.set_env_variables(env_vars_dict: Optional[Dict[str, str]] = None, **kwargs)
Modifier function to apply a set of environment variables to a runtime. Variables may be passed as either a
dictionary of name-value pairs, or as arguments to the function. See KubeResource.apply for more information
on modifiers.

Usage:

function.apply(set_env_variables({"ENV1": "value1", "ENV2": "value2"}))
or
function.apply(set_env_variables(ENV1=value1, ENV2=value2))

Parameters

• env_vars_dict – dictionary of env. variables
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• kwargs – environment variables passed as args

mlrun.platforms.sleep(seconds)
Delay execution for a given number of seconds. The argument may be a floating point number for subsecond
precision.

mlrun.platforms.v3io_cred(api='', user='', access_key='')
Modifier function to copy local v3io env vars to container

Usage:

train = train_op(...)
train.apply(use_v3io_cred())

mlrun.platforms.watch_stream(url, shard_ids: Optional[list] = None, seek_to: Optional[str] = None,
interval=None, is_json=False, **kwargs)

watch on a v3io stream and print data every interval

example:: watch_stream(‘v3io:///users/admin/mystream’)

Parameters

• url – stream url

• shard_ids – range or list of shard IDs

• seek_to – where to start/seek (‘EARLIEST’, ‘LATEST’, ‘TIME’, ‘SEQUENCE’)

:param interval watch interval time in seconds, 0 to run once and return :param is_json: indicate the payload is
json (will be deserialized)

41.11 mlrun.projects

class mlrun.projects.MlrunProject(name=None, description=None, params=None, functions=None,
workflows=None, artifacts=None, artifact_path=None, conda=None,
metadata=None, spec=None, default_requirements: Optional[Union[str,
List[str]]] = None)

Bases: mlrun.model.ModelObj

property artifact_path: str

This is a property of the spec, look there for documentation leaving here for backwards compatibility with
users code that used MlrunProjectLegacy

property artifacts: list

This is a property of the spec, look there for documentation leaving here for backwards compatibility with
users code that used MlrunProjectLegacy

build_function(function: Union[str, mlrun.runtimes.base.BaseRuntime], with_mlrun: Optional[bool] =
None, skip_deployed: bool = False, image=None, base_image=None, commands:
Optional[list] = None, secret_name='', mlrun_version_specifier=None, builder_env:
Optional[dict] = None)

deploy ML function, build container with its dependencies

Parameters

• function – name of the function (in the project) or function object
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• with_mlrun – add the current mlrun package to the container build

• skip_deployed – skip the build if we already have an image for the function

• image – target image name/path

• base_image – base image name/path (commands and source code will be added to
it)

• commands – list of docker build (RUN) commands e.g. [‘pip install pandas’]

• secret_name – k8s secret for accessing the docker registry

• mlrun_version_specifier – which mlrun package version to include (if not cur-
rent)

• builder_env – Kaniko builder pod env vars dict (for config/credentials) e.g.
builder_env={“GIT_TOKEN”: token}, does not work yet in KFP

clear_context()

delete all files and clear the context dir

property context: str

This is a property of the spec, look there for documentation leaving here for backwards compatibility with
users code that used MlrunProjectLegacy

create_remote(url, name='origin', branch=None)
create remote for the project git

Parameters

• url – remote git url

• name – name for the remote (default is ‘origin’)

• branch – Git branch to use as source

create_vault_secrets(secrets)

deploy_function(function: Union[str, mlrun.runtimes.base.BaseRuntime], dashboard: str = '', models:
Optional[list] = None, env: Optional[dict] = None, tag: Optional[str] = None, verbose:
Optional[bool] = None, builder_env: Optional[dict] = None)

deploy real-time (nuclio based) functions

Parameters

• function – name of the function (in the project) or function object

• dashboard – url of the remote Nuclio dashboard (when not local)

• models – list of model items

• env – dict of extra environment variables

• tag – extra version tag

:param verbose add verbose prints/logs :param builder_env: env vars dict for source archive con-
fig/credentials e.g. builder_env={“GIT_TOKEN”: token}

property description: str

This is a property of the spec, look there for documentation leaving here for backwards compatibility with
users code that used MlrunProjectLegacy
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export(filepath=None, include_files: Optional[str] = None)
save the project object into a yaml file or zip archive (default to project.yaml)

By default the project object is exported to a yaml file, when the filepath suffix is ‘.zip’ the project context
dir (code files) are also copied into the zip, the archive path can include DataItem urls (for remote object
storage, e.g. s3://<bucket>/<path>).

Parameters

• filepath – path to store project .yaml or .zip (with the project dir content)

• include_files – glob filter string for selecting files to include in the zip archive

func(key, sync=False)→ mlrun.runtimes.base.BaseRuntime
get function object by name

Parameters sync – will reload/reinit the function

Returns function object

property functions: list

This is a property of the spec, look there for documentation leaving here for backwards compatibility with
users code that used MlrunProjectLegacy

get_artifact(key, tag=None, iter=None)
Return an artifact object

Parameters

• key – artifact key

• tag – version tag

• iter – iteration number (for hyper-param tasks)

Returns Artifact object

get_artifact_uri(key: str, category: str = 'artifact', tag: Optional[str] = None)→ str
return the project artifact uri (store://..) from the artifact key

example:

uri = project.get_artifact_uri("my_model", category="model", tag="prod")

Parameters

• key – artifact key/name

• category – artifact category (artifact, model, feature-vector, ..)

• tag – artifact version tag, default to latest version

get_function(key, sync=True, enrich=False, ignore_cache=False)→ mlrun.runtimes.base.BaseRuntime
get function object by name

Parameters

• key – name of key for search

• sync – will reload/reinit the function

• enrich – add project info/config/source info to the function object

• ignore_cache – read the function object from the DB (ignore the local cache)
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Returns function object

get_function_objects()→ Dict[str, mlrun.runtimes.base.BaseRuntime]
“get a virtual dict with all the project functions ready for use in a pipeline

get_param(key: str, default=None)
get project param by key

get_run_status(run, timeout=None, expected_statuses=None, notifiers:
Optional[mlrun.utils.helpers.RunNotifications] = None)

get_secret(key: str)
get a key based secret e.g. DB password from the context secrets can be specified when invoking a run
through files, env, ..

get_store_resource(uri)
get store resource object by uri

get_vault_secrets(secrets=None, local=False)

import_artifact(item_path: str, new_key=None, artifact_path=None, tag=None)
Import an artifact object/package from .yaml, .json, or .zip file

Parameters

• item_path – dataitem url or file path to the file/package

• new_key – overwrite the artifact key/name

• artifact_path – target artifact path (when not using the default)

• tag – artifact tag to set

Returns artifact object

kind = 'project'

list_artifacts(name=None, tag=None, labels=None, since=None, until=None, iter: Optional[int] =
None, best_iteration: bool = False, kind: Optional[str] = None, category:
Optional[Union[str, mlrun.api.schemas.artifact.ArtifactCategories]] = None)→
mlrun.lists.ArtifactList

List artifacts filtered by various parameters.

The returned result is an ArtifactList (list of dict), use .to_objects() to convert it to a list of RunObjects,
.show() to view graphically in Jupyter, and .to_df() to convert to a DataFrame.

Examples:

# Get latest version of all artifacts in project
latest_artifacts = project.list_artifacts('', tag='latest')
# check different artifact versions for a specific artifact, return as objects␣
→˓list
result_versions = project.list_artifacts('results', tag='*').to_objects()

Parameters

• name – Name of artifacts to retrieve. Name is used as a like query, and is not case-
sensitive. This means that querying for name may return artifacts named my_Name_1
or surname.

• tag – Return artifacts assigned this tag.
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• labels – Return artifacts that have these labels.

• since – Not in use in HTTPRunDB.

• until – Not in use in HTTPRunDB.

• iter – Return artifacts from a specific iteration (where iter=0 means the root itera-
tion). If None (default) return artifacts from all iterations.

• best_iteration – Returns the artifact which belongs to the best iteration of a given
run, in the case of artifacts generated from a hyper-param run. If only a single itera-
tion exists, will return the artifact from that iteration. If using best_iter, the iter
parameter must not be used.

• kind – Return artifacts of the requested kind.

• category – Return artifacts of the requested category.

list_functions(name=None, tag=None, labels=None)
Retrieve a list of functions, filtered by specific criteria.

example:

functions = project.list_functions(tag="latest")

Parameters

• name – Return only functions with a specific name.

• tag – Return function versions with specific tags.

• labels – Return functions that have specific labels assigned to them.

Returns List of function objects.

list_models(name=None, tag=None, labels=None, since=None, until=None, iter: Optional[int] = None,
best_iteration: bool = False)

List models in project, filtered by various parameters.

Examples:

# Get latest version of all models in project
latest_models = project.list_models('', tag='latest')

Parameters

• name – Name of artifacts to retrieve. Name is used as a like query, and is not case-
sensitive. This means that querying for name may return artifacts named my_Name_1
or surname.

• tag – Return artifacts assigned this tag.

• labels – Return artifacts that have these labels.

• since – Not in use in HTTPRunDB.

• until – Not in use in HTTPRunDB.

• iter – Return artifacts from a specific iteration (where iter=0 means the root itera-
tion). If None (default) return artifacts from all iterations.
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• best_iteration – Returns the artifact which belongs to the best iteration of a given
run, in the case of artifacts generated from a hyper-param run. If only a single itera-
tion exists, will return the artifact from that iteration. If using best_iter, the iter
parameter must not be used.

list_runs(name=None, uid=None, labels=None, state=None, sort=True, last=0, iter=False,
start_time_from: Optional[datetime.datetime] = None, start_time_to:
Optional[datetime.datetime] = None, last_update_time_from: Optional[datetime.datetime] =
None, last_update_time_to: Optional[datetime.datetime] = None, **kwargs)→
mlrun.lists.RunList

Retrieve a list of runs, filtered by various options.

The returned result is a `` (list of dict), use .to_objects() to convert it to a list of RunObjects, .show() to
view graphically in Jupyter, .to_df() to convert to a DataFrame, and compare() to generate comparison
table and PCP plot.

Example:

# return a list of runs matching the name and label and compare
runs = project.list_runs(name='download', labels='owner=admin')
runs.compare()
# If running in Jupyter, can use the .show() function to display the results
project.list_runs(name='').show()

Parameters

• name – Name of the run to retrieve.

• uid – Unique ID of the run.

• project – Project that the runs belongs to.

• labels – List runs that have a specific label assigned. Currently only a single label
filter can be applied, otherwise result will be empty.

• state – List only runs whose state is specified.

• sort – Whether to sort the result according to their start time. Otherwise, results will
be returned by their internal order in the DB (order will not be guaranteed).

• last – Deprecated - currently not used.

• iter – If True return runs from all iterations. Otherwise, return only runs whose
iter is 0.

• start_time_from – Filter by run start time in [start_time_from,
start_time_to].

• start_time_to – Filter by run start time in [start_time_from,
start_time_to].

• last_update_time_from – Filter by run last update time in
(last_update_time_from, last_update_time_to).

• last_update_time_to – Filter by run last update time in
(last_update_time_from, last_update_time_to).

log_artifact(item, body=None, tag='', local_path='', artifact_path=None, format=None, upload=None,
labels=None, target_path=None, **kwargs)
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log an output artifact and optionally upload it to datastore

example:

project.log_artifact(
"some-data",
body=b"abc is 123",
local_path="model.txt",
labels={"framework": "xgboost"},

)

Parameters

• item – artifact key or artifact class ()

• body – will use the body as the artifact content

• local_path – path to the local file we upload, will also be use as the destination
subpath (under “artifact_path”)

• artifact_path – target artifact path (when not using the default) to define a subpath
under the default location use: artifact_path=context.artifact_subpath(‘data’)

• format – artifact file format: csv, png, ..

• tag – version tag

• target_path – absolute target path (instead of using artifact_path + local_path)

• upload – upload to datastore (default is True)

• labels – a set of key/value labels to tag the artifact with

Returns artifact object

log_dataset(key, df, tag='', local_path=None, artifact_path=None, upload=None, labels=None, format='',
preview=None, stats=False, target_path='', extra_data=None, label_column: Optional[str] =
None, **kwargs)→ mlrun.artifacts.dataset.DatasetArtifact

log a dataset artifact and optionally upload it to datastore

example:

raw_data = {
"first_name": ["Jason", "Molly", "Tina", "Jake", "Amy"],
"last_name": ["Miller", "Jacobson", "Ali", "Milner", "Cooze"],
"age": [42, 52, 36, 24, 73],
"testScore": [25, 94, 57, 62, 70],

}
df = pd.DataFrame(raw_data, columns=["first_name", "last_name", "age",
→˓"testScore"])
project.log_dataset("mydf", df=df, stats=True)

Parameters

• key – artifact key

• df – dataframe object

• label_column – name of the label column (the one holding the target (y) values)
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• local_path – path to the local file we upload, will also be use as the destination
subpath (under “artifact_path”)

• artifact_path – target artifact path (when not using the default) to define a subpath
under the default location use: artifact_path=context.artifact_subpath(‘data’)

• tag – version tag

• format – optional, format to use (e.g. csv, parquet, ..)

• target_path – absolute target path (instead of using artifact_path + local_path)

• preview – number of lines to store as preview in the artifact metadata

• stats – calculate and store dataset stats in the artifact metadata

• extra_data – key/value list of extra files/charts to link with this dataset

• upload – upload to datastore (default is True)

• labels – a set of key/value labels to tag the artifact with

Returns artifact object

log_model(key, body=None, framework='', tag='', model_dir=None, model_file=None, algorithm=None,
metrics=None, parameters=None, artifact_path=None, upload=None, labels=None, inputs:
Optional[List[mlrun.features.Feature]] = None, outputs: Optional[List[mlrun.features.Feature]]
= None, feature_vector: Optional[str] = None, feature_weights: Optional[list] = None,
training_set=None, label_column=None, extra_data=None, **kwargs)

log a model artifact and optionally upload it to datastore

example:

project.log_model("model", body=dumps(model),
model_file="model.pkl",
metrics=context.results,
training_set=training_df,
label_column='label',
feature_vector=feature_vector_uri,
labels={"app": "fraud"})

Parameters

• key – artifact key or artifact class ()

• body – will use the body as the artifact content

• model_file – path to the local model file we upload (see also model_dir) or to a
model file data url (e.g. http://host/path/model.pkl)

• model_dir – path to the local dir holding the model file and extra files

• artifact_path – target artifact path (when not using the default) to define a subpath
under the default location use: artifact_path=context.artifact_subpath(‘data’)

• framework – name of the ML framework

• algorithm – training algorithm name

• tag – version tag

• metrics – key/value dict of model metrics

• parameters – key/value dict of model parameters
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• inputs – ordered list of model input features (name, type, ..)

• outputs – ordered list of model output/result elements (name, type, ..)

• upload – upload to datastore (default is True)

• labels – a set of key/value labels to tag the artifact with

• feature_vector – feature store feature vector uri (store://feature-
vectors/<project>/<name>[:tag])

• feature_weights – list of feature weights, one per input column

• training_set – training set dataframe, used to infer inputs & outputs

• label_column – which columns in the training set are the label (target) columns

• extra_data – key/value list of extra files/charts to link with this dataset value can be
absolute path | relative path (to model dir) | bytes | artifact object

Returns artifact object

property metadata: mlrun.projects.project.ProjectMetadata

property mountdir: str

This is a property of the spec, look there for documentation leaving here for backwards compatibility with
users code that used MlrunProjectLegacy

property name: str

Project name, this is a property of the project metadata

property notifiers

property params: str

This is a property of the spec, look there for documentation leaving here for backwards compatibility with
users code that used MlrunProjectLegacy

pull(branch=None, remote=None)
pull/update sources from git or tar into the context dir

Parameters

• branch – git branch, if not the current one

• remote – git remote, if other than origin

push(branch, message=None, update=True, remote=None, add: Optional[list] = None)
update spec and push updates to remote git repo

Parameters

• branch – target git branch

• message – git commit message

• update – update files (git add update=True)

• remote – git remote, default to origin

• add – list of files to add

register_artifacts()

register the artifacts in the MLRun DB (under this project)
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reload(sync=False, context=None)→ mlrun.projects.project.MlrunProject
reload the project and function objects from the project yaml/specs

Parameters

• sync – set to True to load functions objects

• context – context directory (where the yaml and code exist)

Returns project object

remove_function(name)
remove a function from a project

Parameters name – name of the function (under the project)

run(name: Optional[str] = None, workflow_path: Optional[str] = None, arguments: Optional[Dict[str, Any]]
= None, artifact_path: Optional[str] = None, workflow_handler: Optional[Union[str, Callable]] = None,
namespace: Optional[str] = None, sync: bool = False, watch: bool = False, dirty: bool = False, ttl:
Optional[int] = None, engine: Optional[str] = None, local: Optional[bool] = None, schedule:
Optional[Union[str, mlrun.api.schemas.schedule.ScheduleCronTrigger, bool]] = None, timeout:
Optional[int] = None)→ mlrun.projects.pipelines._PipelineRunStatus
run a workflow using kubeflow pipelines

Parameters

• name – name of the workflow

• workflow_path – url to a workflow file, if not a project workflow

• arguments – kubeflow pipelines arguments (parameters)

• artifact_path – target path/url for workflow artifacts, the string ‘{{workflow.uid}}’
will be replaced by workflow id

• workflow_handler – workflow function handler (for running workflow function di-
rectly)

• namespace – kubernetes namespace if other than default

• sync – force functions sync before run

• watch – wait for pipeline completion

• dirty – allow running the workflow when the git repo is dirty

• ttl – pipeline ttl in secs (after that the pods will be removed)

• engine – workflow engine running the workflow. supported values are ‘kfp’ (de-
fault), ‘local’ or ‘remote’. for setting engine for remote running use ‘remote:local’ or
‘remote:kfp’.

• local – run local pipeline with local functions (set local=True in function.run())

• schedule – ScheduleCronTrigger class instance or a standard crontab expression
string (which will be converted to the class using its from_crontab constructor), see this
link for help: https://apscheduler.readthedocs.io/en/3.x/modules/triggers/cron.html#
module-apscheduler.triggers.cron for using the pre-defined workflow’s schedule, set
schedule=True

• timeout – timeout in seconds to wait for pipeline completion (used when watch=True)

Returns run id
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run_function(function: Union[str, mlrun.runtimes.base.BaseRuntime], handler: Optional[str] = None,
name: str = '', params: Optional[dict] = None, hyperparams: Optional[dict] = None,
hyper_param_options: Optional[mlrun.model.HyperParamOptions] = None, inputs:
Optional[dict] = None, outputs: Optional[List[str]] = None, workdir: str = '', labels:
Optional[dict] = None, base_task: Optional[mlrun.model.RunTemplate] = None, watch: bool
= True, local: Optional[bool] = None, verbose: Optional[bool] = None, selector:
Optional[str] = None, auto_build: Optional[bool] = None)→
Union[mlrun.model.RunObject, kfp.dsl._container_op.ContainerOp]

Run a local or remote task as part of a local/kubeflow pipeline

example (use with project):

# create a project with two functions (local and from marketplace)
project = mlrun.new_project(project_name, "./proj")
project.set_function("mycode.py", "myfunc", image="mlrun/mlrun")
project.set_function("hub://sklearn_classifier", "train")

# run functions (refer to them by name)
run1 = project.run_function("myfunc", params={"x": 7})
run2 = project.run_function("train", params={"data": run1.outputs["data"]})

Parameters

• function – name of the function (in the project) or function object

• handler – name of the function handler

• name – execution name

• params – input parameters (dict)

• hyperparams – hyper parameters

• selector – selection criteria for hyper params e.g. “max.accuracy”

• hyper_param_options – hyper param options (selector, early stop, strategy, ..) see:
HyperParamOptions

• inputs – input objects (dict of key: path)

• outputs – list of outputs which can pass in the workflow

• workdir – default input artifacts path

• labels – labels to tag the job/run with ({key:val, ..})

• base_task – task object to use as base

• watch – watch/follow run log, True by default

• local – run the function locally vs on the runtime/cluster

• verbose – add verbose prints/logs

• auto_build – when set to True and the function require build it will be built on the
first function run, use only if you dont plan on changing the build config between runs

Returns MLRun RunObject or KubeFlow containerOp

save(filepath=None, store=True)
export project to yaml file and save project in database

Store if True, allow updating in case project already exists
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save_to_db(store=True)
save project to database

Store if True, allow updating in case project already exists

save_workflow(name, target, artifact_path=None, ttl=None)
create and save a workflow as a yaml or archive file

Parameters

• name – workflow name

• target – target file path (can end with .yaml or .zip)

• artifact_path – target path/url for workflow artifacts, the string ‘{{workflow.uid}}’
will be replaced by workflow id

• ttl – pipeline ttl (time to live) in secs (after that the pods will be removed)

set_artifact(key, artifact: Optional[Union[str, dict, mlrun.artifacts.base.Artifact]] = None, target_path:
Optional[str] = None, tag: Optional[str] = None)

add/set an artifact in the project spec (will be registered on load)

example:

# register a simple file artifact
project.set_artifact('data', target_path=data_url)
# register a model artifact
project.set_artifact('model', ModelArtifact(model_file="model.pkl"), target_
→˓path=model_dir_url)

# register a path to artifact package (will be imported on project load)
# to generate such package use `artifact.export(target_path)`
project.set_artifact('model', 'https://mystuff.com/models/mymodel.zip')

Parameters

• key – artifact key/name

• artifact – mlrun Artifact object/dict (or its subclasses) or path to artifact file to
import (yaml/json/zip), relative paths are relative to the context path

• target_path – absolute target path url (point to the artifact content location)

• tag – artifact tag

set_function(func: Optional[Union[str, mlrun.runtimes.base.BaseRuntime]] = None, name: str = '', kind:
str = '', image: Optional[str] = None, handler=None, with_repo: Optional[bool] = None,
requirements: Optional[Union[str, List[str]]] = None)→ mlrun.runtimes.base.BaseRuntime

update or add a function object to the project

function can be provided as an object (func) or a .py/.ipynb/.yaml url support url prefixes:

object (s3://, v3io://, ..)
MLRun DB e.g. db://project/func:ver
functions hub/market: e.g. hub://sklearn_classifier:master

examples:
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proj.set_function(func_object)
proj.set_function('./src/mycode.py', 'ingest',

image='myrepo/ing:latest', with_repo=True)
proj.set_function('http://.../mynb.ipynb', 'train')
proj.set_function('./func.yaml')
proj.set_function('hub://get_toy_data', 'getdata')

Parameters

• func – function object or spec/code url, None refers to current Notebook

• name – name of the function (under the project)

• kind – runtime kind e.g. job, nuclio, spark, dask, mpijob default: job

• image – docker image to be used, can also be specified in the function object/yaml

• handler – default function handler to invoke (can only be set with .py/.ipynb files)

• with_repo – add (clone) the current repo to the build source

• requirements – list of python packages or pip requirements file path

Returns project object

set_model_monitoring_credentials(access_key: str)
Set the credentials that will be used by the project’s model monitoring infrastructure functions. The sup-
plied credentials must have data access

Parameters access_key – Model Monitoring access key for managing user permissions.

set_secrets(secrets: Optional[dict] = None, file_path: Optional[str] = None, provider:
Optional[Union[str, mlrun.api.schemas.secret.SecretProviderName]] = None)

set project secrets from dict or secrets env file when using a secrets file it should have lines in the form
KEY=VALUE, comment line start with “#” V3IO paths/credentials and MLrun service API address are
dropped from the secrets

example secrets file:

# this is an env file
AWS_ACCESS_KEY_ID-XXXX
AWS_SECRET_ACCESS_KEY=YYYY

usage:

# read env vars from dict or file and set as project secrets
project.set_secrets({"SECRET1": "value"})
project.set_secrets(file_path="secrets.env")

Parameters

• secrets – dict with secrets key/value

• file_path – path to secrets file

• provider – MLRun secrets provider
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set_source(source, pull_at_runtime=False, workdir=None)
set the project source code path(can be git/tar/zip archive)

Parameters

• source – valid path to git, zip, or tar file, (or None for current) e.g.
git://github.com/mlrun/something.git http://some/url/file.zip

• pull_at_runtime – load the archive into the container at job runtime vs on
build/deploy

• workdir – the relative workdir path (under the context dir)

set_workflow(name, workflow_path: str, embed=False, engine=None, args_schema:
Optional[List[mlrun.model.EntrypointParam]] = None, handler=None, schedule:
Optional[Union[str, mlrun.api.schemas.schedule.ScheduleCronTrigger]] = None, ttl=None,
**args)

add or update a workflow, specify a name and the code path

Parameters

• name – name of the workflow

• workflow_path – url/path for the workflow file

• embed – add the workflow code into the project.yaml

• engine – workflow processing engine (“kfp” or “local”)

• args_schema – list of arg schema definitions
(:py:class`~mlrun.model.EntrypointParam`)

• handler – workflow function handler

• schedule – ScheduleCronTrigger class instance or a standard crontab expression
string (which will be converted to the class using its from_crontab constructor), see this
link for help: https://apscheduler.readthedocs.io/en/3.x/modules/triggers/cron.html#
module-apscheduler.triggers.cron

• ttl – pipeline ttl in secs (after that the pods will be removed)

• args – argument values (key=value, ..)

property source: str

This is a property of the spec, look there for documentation leaving here for backwards compatibility with
users code that used MlrunProjectLegacy

property spec: mlrun.projects.project.ProjectSpec

property status: mlrun.projects.project.ProjectStatus

sync_functions(names: Optional[list] = None, always=True, save=False)
reload function objects from specs and files

with_secrets(kind, source, prefix='')
register a secrets source (file, env or dict)

read secrets from a source provider to be used in workflows, example:

proj.with_secrets('file', 'file.txt')
proj.with_secrets('inline', {'key': 'val'})
proj.with_secrets('env', 'ENV1,ENV2', prefix='PFX_')
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Vault secret source has several options:

proj.with_secrets('vault', {'user': <user name>, 'secrets': ['secret1',
→˓'secret2' ...]})
proj.with_secrets('vault', {'project': <proj.name>, 'secrets': ['secret1',
→˓'secret2' ...]})
proj.with_secrets('vault', ['secret1', 'secret2' ...])

The 2nd option uses the current project name as context. Can also use empty secret list:

proj.with_secrets('vault', [])

This will enable access to all secrets in vault registered to the current project.

Parameters

• kind – secret type (file, inline, env, vault)

• source – secret data or link (see example)

• prefix – add a prefix to the keys in this source

Returns project object

property workflows: list

This is a property of the spec, look there for documentation leaving here for backwards compatibility with
users code that used MlrunProjectLegacy

class mlrun.projects.ProjectMetadata(name=None, created=None, labels=None, annotations=None)
Bases: mlrun.model.ModelObj

property name: str

Project name

static validate_project_name(name: str, raise_on_failure: bool = True)→ bool

class mlrun.projects.ProjectSpec(description=None, params=None, functions=None, workflows=None,
artifacts=None, artifact_path=None, conda=None, source=None,
subpath=None, origin_url=None, goals=None,
load_source_on_run=None, default_requirements: Optional[Union[str,
List[str]]] = None, desired_state='online', owner=None,
disable_auto_mount=None, workdir=None)

Bases: mlrun.model.ModelObj

property artifacts: list

list of artifacts used in this project

property functions: list

list of function object/specs used in this project

get_code_path()

Get the path to the code root/workdir

property mountdir: str

specify to mount the context dir inside the function container use ‘.’ to use the same path as in the client
e.g. Jupyter

remove_artifact(key)
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remove_function(name)

remove_workflow(name)

set_artifact(key, artifact)

set_function(name, function_object, function_dict)

set_workflow(name, workflow)

property source: str

source url or git repo

property workflows: List[dict]

list of workflows specs dicts used in this project

Type returns

class mlrun.projects.ProjectStatus(state=None)
Bases: mlrun.model.ModelObj

mlrun.projects.build_function(function: Union[str, mlrun.runtimes.base.BaseRuntime], with_mlrun:
Optional[bool] = None, skip_deployed: bool = False, image=None,
base_image=None, commands: Optional[list] = None, secret_name='',
requirements: Optional[Union[str, List[str]]] = None,
mlrun_version_specifier=None, builder_env: Optional[dict] = None,
project_object=None)

deploy ML function, build container with its dependencies

Parameters

• function – name of the function (in the project) or function object

• with_mlrun – add the current mlrun package to the container build

• skip_deployed – skip the build if we already have an image for the function

• image – target image name/path

• base_image – base image name/path (commands and source code will be added to it)

• commands – list of docker build (RUN) commands e.g. [‘pip install pandas’]

• secret_name – k8s secret for accessing the docker registry

• requirements – list of python packages or pip requirements file path, defaults to None

• mlrun_version_specifier – which mlrun package version to include (if not current)

• builder_env – Kaniko builder pod env vars dict (for config/credentials) e.g.
builder_env={“GIT_TOKEN”: token}, does not work yet in KFP

• project_object – override the project object to use, will default to the project set in the
runtime context.

• builder_env – Kaniko builder pod env vars dict (for config/credentials) e.g.
builder_env={“GIT_TOKEN”: token}, does not work yet in KFP

mlrun.projects.deploy_function(function: Union[str, mlrun.runtimes.base.BaseRuntime], dashboard: str =
'', models: Optional[list] = None, env: Optional[dict] = None, tag:
Optional[str] = None, verbose: Optional[bool] = None, builder_env:
Optional[dict] = None, project_object=None)

deploy real-time (nuclio based) functions
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Parameters

• function – name of the function (in the project) or function object

• dashboard – url of the remote Nuclio dashboard (when not local)

• models – list of model items

• env – dict of extra environment variables

• tag – extra version tag

:param verbose add verbose prints/logs :param builder_env: env vars dict for source archive config/credentials
e.g. builder_env={“GIT_TOKEN”: token} :param project_object: override the project object to use, will default
to the project set in the runtime context.

mlrun.projects.get_or_create_project(name: str, context: str, url: Optional[str] = None, secrets:
Optional[dict] = None, init_git=False, subpath: Optional[str] =
None, clone: bool = False, user_project: bool = False,
from_template: Optional[str] = None, save: bool = True)→
mlrun.projects.project.MlrunProject

Load a project from MLRun DB, or create/import if doesnt exist

example:

# load project from the DB (if exist) or the source repo
project = get_or_create_project("myproj", "./", "git://github.com/mlrun/demo-xgb-
→˓project.git")
project.pull("development") # pull the latest code from git
project.run("main", arguments={'data': data_url}) # run the workflow "main"

Parameters

• name – project name

• context – project local directory path

• url – name (in DB) or git or tar.gz or .zip sources archive path e.g.:
git://github.com/mlrun/demo-xgb-project.git http://mysite/archived-project.zip

• secrets – key:secret dict or SecretsStore used to download sources

• init_git – if True, will git init the context dir

• subpath – project subpath (within the archive/context)

• clone – if True, always clone (delete any existing content)

• user_project – add the current user name to the project name (for db:// prefixes)

• from_template – path to project YAML file that will be used as from_template (for new
projects)

• save – whether to save the created project in the DB

Returns project object

mlrun.projects.load_project(context: str, url: Optional[str] = None, name: Optional[str] = None, secrets:
Optional[dict] = None, init_git: bool = False, subpath: Optional[str] = None,
clone: bool = False, user_project: bool = False, save: bool = True)→
mlrun.projects.project.MlrunProject

466 Chapter 41. API by module



mlrun, Release UNKNOWN

Load an MLRun project from git or tar or dir

example:

# Load the project and run the 'main' workflow.
# When using git as the url source the context directory must be an empty or
# non-existent folder as the git repo will be cloned there
project = load_project("./demo_proj", "git://github.com/mlrun/project-demo.git")
project.run("main", arguments={'data': data_url})

Parameters

• context – project local directory path

• url – name (in DB) or git or tar.gz or .zip sources archive path e.g.:
git://github.com/mlrun/demo-xgb-project.git http://mysite/archived-project.zip <project-
name> The git project should include the project yaml file. If the project yaml file is in a
sub-directory, must specify the sub-directory.

• name – project name

• secrets – key:secret dict or SecretsStore used to download sources

• init_git – if True, will git init the context dir

• subpath – project subpath (within the archive)

• clone – if True, always clone (delete any existing content)

• user_project – add the current user name to the project name (for db:// prefixes)

• save – whether to save the created project and artifact in the DB

Returns project object

mlrun.projects.new_project(name, context=None, init_git: bool = False, user_project: bool = False, remote:
Optional[str] = None, from_template: Optional[str] = None, secrets:
Optional[dict] = None, description: Optional[str] = None, subpath:
Optional[str] = None, save: bool = True, overwrite: bool = False)→
mlrun.projects.project.MlrunProject

Create a new MLRun project, optionally load it from a yaml/zip/git template

example:

# create a project with local and marketplace functions, a workflow, and an artifact
project = mlrun.new_project("myproj", "./", init_git=True, description="my new␣
→˓project")
project.set_function('prep_data.py', 'prep-data', image='mlrun/mlrun', handler=
→˓'prep_data')
project.set_function('hub://sklearn_classifier', 'train')
project.set_artifact('data', Artifact(target_path=data_url))
project.set_workflow('main', "./myflow.py")
project.save()

# run the "main" workflow (watch=True to wait for run completion)
project.run("main", watch=True)

example (load from template):
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# create a new project from a zip template (can also use yaml/git templates)
# initialize a local git, and register the git remote path
project = mlrun.new_project("myproj", "./", init_git=True,

remote="git://github.com/mlrun/project-demo.git",
from_template="http://mysite/proj.zip")

project.run("main", watch=True)

Parameters

• name – project name

• context – project local directory path

• init_git – if True, will git init the context dir

• user_project – add the current user name to the provided project name (making it
unique per user)

• remote – remote Git url

• from_template – path to project YAML/zip file that will be used as a template

• secrets – key:secret dict or SecretsStore used to download sources

• description – text describing the project

• subpath – project subpath (relative to the context dir)

• save – whether to save the created project in the DB

• overwrite – overwrite project using ‘cascade’ deletion strategy (deletes project re-
sources) if project with name exists

Returns project object

mlrun.projects.run_function(function: Union[str, mlrun.runtimes.base.BaseRuntime], handler: Optional[str]
= None, name: str = '', params: Optional[dict] = None, hyperparams:
Optional[dict] = None, hyper_param_options:
Optional[mlrun.model.HyperParamOptions] = None, inputs: Optional[dict] =
None, outputs: Optional[List[str]] = None, workdir: str = '', labels:
Optional[dict] = None, base_task: Optional[mlrun.model.RunTemplate] =
None, watch: bool = True, local: Optional[bool] = None, verbose:
Optional[bool] = None, selector: Optional[str] = None, project_object=None,
auto_build: Optional[bool] = None)→ Union[mlrun.model.RunObject,
kfp.dsl._container_op.ContainerOp]

Run a local or remote task as part of a local/kubeflow pipeline

run_function() allow you to execute a function locally, on a remote cluster, or as part of an automated workflow
function can be specified as an object or by name (str), when the function is specified by name it is looked up in
the current project eliminating the need to redefine/edit functions.

when functions run as part of a workflow/pipeline (project.run()) some attributes can be set at the run level,
e.g. local=True will run all the functions locally, setting artifact_path will direct all outputs to the same path.
project runs provide additional notifications/reporting and exception handling. inside a Kubeflow pipeline (KFP)
run_function() generates KFP “ContainerOps” which are used to form a DAG some behavior may differ between
regular runs and deferred KFP runs.

example (use with function object):
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function = mlrun.import_function("hub://sklearn_classifier")
run1 = run_function(function, params={"data": url})

example (use with project):

# create a project with two functions (local and from marketplace)
project = mlrun.new_project(project_name, "./proj)
project.set_function("mycode.py", "myfunc", image="mlrun/mlrun")
project.set_function("hub://sklearn_classifier", "train")

# run functions (refer to them by name)
run1 = run_function("myfunc", params={"x": 7})
run2 = run_function("train", params={"data": run1.outputs["data"]})

example (use in pipeline):

@dsl.pipeline(name="test pipeline", description="test")
def my_pipe(url=""):

run1 = run_function("loaddata", params={"url": url})
run2 = run_function("train", params={"data": run1.outputs["data"]})

project.run(workflow_handler=my_pipe, arguments={"param1": 7})

Parameters

• function – name of the function (in the project) or function object

• handler – name of the function handler

• name – execution name

• params – input parameters (dict)

• hyperparams – hyper parameters

• selector – selection criteria for hyper params e.g. “max.accuracy”

• hyper_param_options – hyper param options (selector, early stop, strategy, ..) see:
HyperParamOptions

• inputs – input objects (dict of key: path)

• outputs – list of outputs which can pass in the workflow

• workdir – default input artifacts path

• labels – labels to tag the job/run with ({key:val, ..})

• base_task – task object to use as base

• watch – watch/follow run log, True by default

• local – run the function locally vs on the runtime/cluster

• verbose – add verbose prints/logs

• project_object – override the project object to use, will default to the project set in the
runtime context.

• auto_build – when set to True and the function require build it will be built on the first
function run, use only if you dont plan on changing the build config between runs
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Returns MLRun RunObject or KubeFlow containerOp

41.12 mlrun.run

class mlrun.run.ArtifactType(value)
Bases: enum.Enum

Possible artifact types to log using the MLRun context decorator.

DATASET = 'dataset'

DEFAULT = 'result'

DIRECTORY = 'directory'

FILE = 'file'

OBJECT = 'object'

PLOT = 'plot'

RESULT = 'result'

class mlrun.run.ContextHandler

Bases: object

Private class for handling an MLRun context of a function that is wrapped in MLRun’s handler decorator.

The context handler have 3 duties:

1. Check if the user used MLRun to run the wrapped function and if so, get the MLRun context.

2. Parse the user’s inputs (MLRun DataItem) to the function.

3. Log the function’s outputs to MLRun.

The context handler use dictionaries to map objects to their logging / parsing function. The maps can be edited
using the relevant update_X class method. If needed to add additional artifacts types, the ArtifactType class can
be inherited and replaced as well using the update_artifact_type_class class method.

Initialize a context handler.

is_context_available()→ bool
Check if a context was found by the method look_for_context.

Returns True if a context was found and False otherwise.

log_outputs(outputs: list, logging_instructions: List[Optional[Union[Tuple[str, mlrun.run.ArtifactType],
Tuple[str, str], Tuple[str, mlrun.run.ArtifactType, Dict[str, Any]], Tuple[str, str, Dict[str, Any]],
str]]])

Log the given outputs as artifacts with the stored context.

Parameters

• outputs – List of outputs to log.

• logging_instructions – List of logging instructions to use.
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look_for_context(args: tuple, kwargs: dict)

Look for an MLRun context (mlrun.MLClientCtx). The handler will look for a context in the given order:

1. The given arguments.

2. The given keyword arguments.

3. If an MLRun RunTime was used the context will be located via the mlrun.get_or_create_ctx
method.

Parameters

• args – The arguments tuple passed to the function.

• kwargs – The keyword arguments dictionary passed to the function.

parse_inputs(args: tuple, kwargs: dict, expected_arguments_types: collections.OrderedDict)→ tuple
Parse the given arguments and keyword arguments data items to the expected types.

Parameters

• args – The arguments tuple passed to the function.

• kwargs – The keyword arguments dictionary passed to the function.

• expected_arguments_types – An ordered dictionary of the expected types of ar-
guments.

Returns The parsed args (kwargs are parsed inplace).

set_labels(labels: Dict[str, str])
Set the given labels with the stored context.

Parameters labels – The labels to set.

classmethod update_artifact_type_class(artifact_type_class: Type[mlrun.run.ArtifactType])
Update the artifact type enum class that the handler will use to specify new artifact types to log and parse.

Parameters artifact_type_class – An enum inheriting from the ArtifactType enum.

classmethod update_default_objects_artifact_types_map(updates: Dict[type,
mlrun.run.ArtifactType])

Enrich the default objects artifact types map with new objects types to support.

Parameters updates – New objects types to artifact types to support.

classmethod update_inputs_parsing_map(updates: Dict[type,
Callable[[mlrun.datastore.base.DataItem], Any]])

Enrich the inputs parsing map with new objects to support. The inputs parsing map is a dictionary of
object types as key, and a function that will handle the given input. The function must accept 1 keyword
argument (data_item: mlrun.DataItem) and return the relevant parsed object.

Parameters updates – New object types to support - a dictionary of artifact type enum as
key, and a function that will handle the given input to update the current map.

classmethod update_outputs_logging_map(updates: Dict[mlrun.run.ArtifactType,
Callable[[mlrun.execution.MLClientCtx, Any, str, dict],
None]])
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Enrich the outputs logging map with new artifact types to support. The outputs logging map is a dictionary
of artifact type enum as key, and a function that will handle the given output. The function must accept 4
keyword arguments

• ctx: mlrun.MLClientCtx - The MLRun context to log with.

• obj: Any - The value / object to log.

• key: str - The key of the artifact.

• logging_kwargs: dict - Keyword arguments the user can pass in the instructions tuple.

Parameters updates – New artifact types to support - a dictionary of artifact type enum as
key, and a function that will handle the given output to update the current map.

class mlrun.run.InputsParser

Bases: object

A static class to hold all the common parsing functions - functions for parsing MLRun DataItem to the user
desired type.

static parse_dict(data_item: mlrun.datastore.base.DataItem)→ dict
Parse an MLRun DataItem to a dict.

Parameters data_item – The DataItem to parse.

Returns The DataItem as a dict.

static parse_list(data_item: mlrun.datastore.base.DataItem)→ list
Parse an MLRun DataItem to a list.

Parameters data_item – The DataItem to parse.

Returns The DataItem as a list.

static parse_numpy_array(data_item: mlrun.datastore.base.DataItem)→ numpy.ndarray
Parse an MLRun DataItem to a numpy.ndarray.

Parameters data_item – The DataItem to parse.

Returns The DataItem as a numpy.ndarray.

static parse_object(data_item: mlrun.datastore.base.DataItem)→ object
Parse an MLRun DataItem to its unpickled object. The pickle file will be downloaded to a local temp
directory and then loaded.

Parameters data_item – The DataItem to parse.

Returns The DataItem as the original object that was pickled once it was logged.

static parse_pandas_dataframe(data_item: mlrun.datastore.base.DataItem)→
pandas.core.frame.DataFrame

Parse an MLRun DataItem to a pandas.DataFrame.

Parameters data_item – The DataItem to parse.

Returns The DataItem as a pandas.DataFrame.
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class mlrun.run.OutputsLogger

Bases: object

A static class to hold all the common logging functions - functions for logging different objects by artifact type
to MLRun.

static log_dataset(ctx: mlrun.execution.MLClientCtx, obj: Union[pandas.core.frame.DataFrame,
numpy.ndarray, pandas.core.series.Series, dict, list], key: str, logging_kwargs: dict)

Log an object as a dataset. The dataset wil lbe cast to a pandas.DataFrame. Supporting casting from
pandas.Series, numpy.ndarray, dict and list.

Parameters

• ctx – The MLRun context to log with.

• obj – The data to log.

• key – The key of the artifact.

• logging_kwargs – Additional keyword arguments to pass to the context.log_dataset

Raises MLRunInvalidArgumentError – If the type is not supported for being cast to pan-
das.DataFrame.

static log_directory(ctx: mlrun.execution.MLClientCtx, obj: Union[str, pathlib.Path], key: str,
logging_kwargs: dict)

Log a directory as a zip file. The zip file will be created at the current working directory. Once logged, it
will be deleted.

Parameters

• ctx – The MLRun context to log with.

• obj – The directory to zip path.

• key – The key of the artifact.

• logging_kwargs – Additional keyword arguments to pass to the context.log_artifact
method.

Raises MLRunInvalidArgumentError – In case the given path is not of a directory or do not
exist.

static log_file(ctx: mlrun.execution.MLClientCtx, obj: Union[str, pathlib.Path], key: str,
logging_kwargs: dict)

Log a file to MLRun.

Parameters

• ctx – The MLRun context to log with.

• obj – The path of the file to log.

• key – The key of the artifact.

• logging_kwargs – Additional keyword arguments to pass to the context.log_artifact
method.

Raises MLRunInvalidArgumentError – In case the given path is not of a file or do not exist.

static log_object(ctx: mlrun.execution.MLClientCtx, obj, key: str, logging_kwargs: dict)
Log an object as a pickle.

Parameters
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• ctx – The MLRun context to log with.

• obj – The object to log.

• key – The key of the artifact.

• logging_kwargs – Additional keyword arguments to pass to the context.log_artifact
method.

static log_plot(ctx: mlrun.execution.MLClientCtx, obj, key: str, logging_kwargs: dict)
Log an object as a plot. Currently, supporting plots produced by one the following modules: matplotlib,
seaborn, plotly and bokeh.

Parameters

• ctx – The MLRun context to log with.

• obj – The plot to log.

• key – The key of the artifact.

• logging_kwargs – Additional keyword arguments to pass to the context.log_artifact.

Raises MLRunInvalidArgumentError – If the object type is not supported (meaning the plot
was not produced by one of the supported modules).

static log_result(ctx: mlrun.execution.MLClientCtx, obj: Union[int, float, str, list, tuple, dict,
numpy.ndarray], key: str, logging_kwargs: dict)

Log an object as a result. The objects value will be cast to a serializable version of itself. Supporting: int,
float, str, list, tuple, dict, numpy.ndarray

Parameters

• ctx – The MLRun context to log with.

• obj – The value to log.

• key – The key of the artifact.

• logging_kwargs – Additional keyword arguments to pass to the context.log_result
method.

class mlrun.run.RunStatuses

Bases: object

static all()

error = 'Error'

failed = 'Failed'

running = 'Running'

skipped = 'Skipped'

static stable_statuses()

succeeded = 'Succeeded'

static transient_statuses()
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mlrun.run.code_to_function(name: str = '', project: str = '', tag: str = '', filename: str = '', handler: str = '',
kind: str = '', image: Optional[str] = None, code_output: str = '', embed_code:
bool = True, description: str = '', requirements: Optional[Union[str, List[str]]] =
None, categories: Optional[List[str]] = None, labels: Optional[Dict[str, str]] =
None, with_doc: bool = True, ignored_tags=None)→
Union[mlrun.runtimes.mpijob.v1alpha1.MpiRuntimeV1Alpha1,
mlrun.runtimes.mpijob.v1.MpiRuntimeV1,
mlrun.runtimes.function.RemoteRuntime,
mlrun.runtimes.serving.ServingRuntime, mlrun.runtimes.daskjob.DaskCluster,
mlrun.runtimes.kubejob.KubejobRuntime, mlrun.runtimes.local.LocalRuntime,
mlrun.runtimes.sparkjob.spark2job.Spark2Runtime,
mlrun.runtimes.sparkjob.spark3job.Spark3Runtime,
mlrun.runtimes.remotesparkjob.RemoteSparkRuntime]

Convenience function to insert code and configure an mlrun runtime.

Easiest way to construct a runtime type object. Provides the most often used configuration options for all runtimes
as parameters.

Instantiated runtimes are considered ‘functions’ in mlrun, but they are anything from nuclio functions to generic
kubernetes pods to spark jobs. Functions are meant to be focused, and as such limited in scope and size. Typically
a function can be expressed in a single python module with added support from custom docker images and
commands for the environment. The returned runtime object can be further configured if more customization is
required.

One of the most important parameters is ‘kind’. This is what is used to specify the chosen runtimes. The options
are:

• local: execute a local python or shell script

• job: insert the code into a Kubernetes pod and execute it

• nuclio: insert the code into a real-time serverless nuclio function

• serving: insert code into orchestrated nuclio function(s) forming a DAG

• dask: run the specified python code / script as Dask Distributed job

• mpijob: run distributed Horovod jobs over the MPI job operator

• spark: run distributed Spark job using Spark Kubernetes Operator

• remote-spark: run distributed Spark job on remote Spark service

Learn more about function runtimes here: https://docs.mlrun.org/en/latest/runtimes/functions.html#
function-runtimes

Parameters

• name – function name, typically best to use hyphen-case

• project – project used to namespace the function, defaults to ‘default’

• tag – function tag to track multiple versions of the same function, defaults to ‘latest’

• filename – path to .py/.ipynb file, defaults to current jupyter notebook

• handler – The default function handler to call for the job or nuclio function, in batch
functions (job, mpijob, ..) the handler can also be specified in the .run() command, when
not specified the entire file will be executed (as main). for nuclio functions the handler is
in the form of module:function, defaults to ‘main:handler’

• kind – function runtime type string - nuclio, job, etc. (see docstring for all options)

• image – base docker image to use for building the function container, defaults to None
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• code_output – specify ‘.’ to generate python module from the current jupyter notebook

• embed_code – indicates whether or not to inject the code directly into the function runtime
spec, defaults to True

• description – short function description, defaults to ‘’

• requirements – list of python packages or pip requirements file path, defaults to None

• categories – list of categories for mlrun function marketplace, defaults to None

• labels – immutable name/value pairs to tag the function with useful metadata, defaults
to None

• with_doc – indicates whether to document the function parameters, defaults to True

• ignored_tags – notebook cells to ignore when converting notebooks to py code (sepa-
rated by ‘;’)

Returns pre-configured function object from a mlrun runtime class

example:

import mlrun

# create job function object from notebook code and add doc/metadata
fn = mlrun.code_to_function("file_utils", kind="job",

handler="open_archive", image="mlrun/mlrun",
description = "this function opens a zip archive into a␣

→˓local/mounted folder",
categories = ["fileutils"],
labels = {"author": "me"})

example:

import mlrun
from pathlib import Path

# create file
Path("mover.py").touch()

# create nuclio function object from python module call mover.py
fn = mlrun.code_to_function("nuclio-mover", kind="nuclio",

filename="mover.py", image="python:3.7",
description = "this function moves files from one␣

→˓system to another",
requirements = ["pandas"],
labels = {"author": "me"})

mlrun.run.download_object(url, target, secrets=None)
download mlrun dataitem (from path/url to target path)

mlrun.run.function_to_module(code='', workdir=None, secrets=None, silent=False)
Load code, notebook or mlrun function as .py module this function can import a local/remote py file or notebook
or load an mlrun function object as a module, you can use this from your code, notebook, or another function
(for common libs)

Note: the function may have package requirements which must be satisfied

example:

476 Chapter 41. API by module



mlrun, Release UNKNOWN

mod = mlrun.function_to_module('./examples/training.py')
task = mlrun.new_task(inputs={'infile.txt': '../examples/infile.txt'})
context = mlrun.get_or_create_ctx('myfunc', spec=task)
mod.my_job(context, p1=1, p2='x')
print(context.to_yaml())

fn = mlrun.import_function('hub://open_archive')
mod = mlrun.function_to_module(fn)
data = mlrun.run.get_dataitem("https://fpsignals-public.s3.amazonaws.com/catsndogs.
→˓tar.gz")
context = mlrun.get_or_create_ctx('myfunc')
mod.open_archive(context, archive_url=data)
print(context.to_yaml())

Parameters

• code – path/url to function (.py or .ipynb or .yaml) OR function object

• workdir – code workdir

• secrets – secrets needed to access the URL (e.g.s3, v3io, ..)

• silent – do not raise on errors

Returns python module

mlrun.run.get_dataitem(url, secrets=None, db=None)
get mlrun dataitem object (from path/url)

mlrun.run.get_object(url, secrets=None, size=None, offset=0, db=None)
get mlrun dataitem body (from path/url)

mlrun.run.get_or_create_ctx(name: str, event=None, spec=None, with_env: bool = True, rundb: str = '',
project: str = '', upload_artifacts=False)

called from within the user program to obtain a run context

the run context is an interface for receiving parameters, data and logging run results, the run context is read from
the event, spec, or environment (in that order), user can also work without a context (local defaults mode)

all results are automatically stored in the “rundb” or artifact store, the path to the rundb can be specified in the
call or obtained from env.

Parameters

• name – run name (will be overridden by context)

• event – function (nuclio Event object)

• spec – dictionary holding run spec

• with_env – look for context in environment vars, default True

• rundb – path/url to the metadata and artifact database

• project – project to initiate the context in (by default mlrun.mlctx.default_project)

• upload_artifacts – when using local context (not as part of a job/run), upload artifacts
to the system default artifact path location

Returns execution context

Examples:
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# load MLRUN runtime context (will be set by the runtime framework e.g. KubeFlow)
context = get_or_create_ctx('train')

# get parameters from the runtime context (or use defaults)
p1 = context.get_param('p1', 1)
p2 = context.get_param('p2', 'a-string')

# access input metadata, values, files, and secrets (passwords)
print(f'Run: {context.name} (uid={context.uid})')
print(f'Params: p1={p1}, p2={p2}')
print(f'accesskey = {context.get_secret("ACCESS_KEY")}')
input_str = context.get_input('infile.txt').get()
print(f'file: {input_str}')

# RUN some useful code e.g. ML training, data prep, etc.

# log scalar result values (job result metrics)
context.log_result('accuracy', p1 * 2)
context.log_result('loss', p1 * 3)
context.set_label('framework', 'sklearn')

# log various types of artifacts (file, web page, table), will be versioned and␣
→˓visible in the UI
context.log_artifact('model.txt', body=b'abc is 123', labels={'framework': 'xgboost
→˓'})
context.log_artifact('results.html', body=b'<b> Some HTML <b>', viewer='web-app')

mlrun.run.get_pipeline(run_id, namespace=None, format_: Union[str,
mlrun.api.schemas.pipeline.PipelinesFormat] = PipelinesFormat.summary, project:
Optional[str] = None, remote: bool = True)

Get Pipeline status

Parameters

• run_id – id of pipelines run

• namespace – k8s namespace if not default

• format – Format of the results. Possible values are: - summary (default value) - Return
summary of the object data. - full - Return full pipeline object.

• project – the project of the pipeline run

• remote – read kfp data from mlrun service (default=True)

Returns kfp run dict

mlrun.run.handler(labels: Optional[Dict[str, str]] = None, outputs: Optional[List[Optional[Union[Tuple[str,
mlrun.run.ArtifactType], Tuple[str, str], Tuple[str, mlrun.run.ArtifactType, Dict[str, Any]],
Tuple[str, str, Dict[str, Any]], str]]]] = None, inputs: Union[bool, Dict[str, Type]] = True)

MLRun’s handler is a decorator to wrap a function and enable setting labels, automatic mlrun.DataItem parsing
and outputs logging.

Parameters

• labels – Labels to add to the run. Expecting a dictionary with the labels names as keys.
Default: None.
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• outputs – Logging configurations for the function’s returned values. Expecting a list of
tuples and None values:

– str - A string in the format of ‘{key}:{artifact_type}’. If a string was given without ‘:’ it will
indicate the key and the artifact type will be defaulted according to the returned
value type.

– tuple - A tuple of:

∗ [0]: str - The key (name) of the artifact to use for the logged output.

∗ [1]: Union[ArtifactType, str] = “result” - An ArtifactType enum or an equivalent
string, that indicates how to log the returned value. The artifact types can be one
of:

· DATASET = “dataset”

· DIRECTORY = “directory”

· FILE = “file”

· OBJECT = “object”

· PLOT = “plot”

· RESULT = “result”.

∗ [2]: Optional[Dict[str, Any]] - A keyword arguments dictionary with the prop-
erties to pass to the relevant logging function (one of context.log_artifact, con-
text.log_result, context.log_dataset).

– None - Do not log the output.

The list length must be equal to the total amount of returned values from the function.
Default to None - meaning no outputs will be logged.

• inputs – Parsing configurations for the arguments passed as inputs via the run method
of an MLRun function. Can be passed as a boolean value or a dictionary:

– True - Parse all found inputs to the assigned type hint in the function’s signature. If there is no
type hint assigned, the value will remain an mlrun.DataItem.

– False - Do not parse inputs, leaving the inputs as mlrun.DataItem.

– Dict[str, Type] - A dictionary with argument name as key and the expected type to parse the
mlrun.DataItem to.

Defaulted to True.

Example:

import mlrun

@mlrun.handler(outputs=["my_array", None, "my_multiplier"])
def my_handler(array: np.ndarray, m: int):

array = array * m
m += 1
return array, "I won't be logged", m

>>> mlrun_function = mlrun.code_to_function("my_code.py", kind="job")
>>> run_object = mlrun_function.run(
... handler="my_handler",
... inputs={"array": "store://my_array_Artifact"},

(continues on next page)
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(continued from previous page)

... params={"m": 2}

... )
>>> run_object.outputs
{'my_multiplier': 3, 'my_array': 'store://...'}

mlrun.run.import_function(url='', secrets=None, db='', project=None, new_name=None)
Create function object from DB or local/remote YAML file

Function can be imported from function repositories (mlrun marketplace or local db), or be read from a remote
URL (http(s), s3, git, v3io, ..) containing the function YAML

special URLs:

function marketplace: hub://{name}[:{tag}]
local mlrun db: db://{project-name}/{name}[:{tag}]

examples:

function = mlrun.import_function("hub://sklearn_classifier")
function = mlrun.import_function("./func.yaml")
function = mlrun.import_function("https://raw.githubusercontent.com/org/repo/func.
→˓yaml")

Parameters

• url – path/url to marketplace, db or function YAML file

• secrets – optional, credentials dict for DB or URL (s3, v3io, . . . )

• db – optional, mlrun api/db path

• project – optional, target project for the function

• new_name – optional, override the imported function name

Returns function object

mlrun.run.import_function_to_dict(url, secrets=None)
Load function spec from local/remote YAML file

mlrun.run.list_pipelines(full=False, page_token='', page_size=None, sort_by='', filter_='',
namespace=None, project='*', format_:
mlrun.api.schemas.pipeline.PipelinesFormat = PipelinesFormat.metadata_only)→
Tuple[int, Optional[int], List[dict]]

List pipelines

Parameters

• full – Deprecated, use format_ instead. if True will set format_ to full, otherwise for-
mat_ will be used

• page_token – A page token to request the next page of results. The token is acquired
from the nextPageToken field of the response from the previous call or can be omitted
when fetching the first page.

• page_size – The number of pipelines to be listed per page. If there are more pipelines
than this number, the response message will contain a nextPageToken field you can use to
fetch the next page.

480 Chapter 41. API by module



mlrun, Release UNKNOWN

• sort_by – Can be format of “field_name”, “field_name asc” or “field_name desc” (Ex-
ample, “name asc” or “id desc”). Ascending by default.

• filter – A url-encoded, JSON-serialized Filter protocol buffer, see: [filter.proto](https:
//github.com/kubeflow/pipelines/ blob/master/backend/api/filter.proto).

• namespace – Kubernetes namespace if other than default

• project – Can be used to retrieve only specific project pipelines. “*” for all projects.
Note that filtering by project can’t be used together with pagination, sorting, or custom
filter.

• format – Control what will be returned (full/metadata_only/name_only)

mlrun.run.load_func_code(command='', workdir=None, secrets=None, name='name')

mlrun.run.new_function(name: str = '', project: str = '', tag: str = '', kind: str = '', command: str = '', image: str
= '', args: Optional[list] = None, runtime=None, mode=None, handler: Optional[str]
= None, source: Optional[str] = None, requirements: Optional[Union[str, List[str]]]
= None, kfp=None)

Create a new ML function from base properties

example:

# define a container based function (the `training.py` must exist in the container␣
→˓workdir)
f = new_function(command='training.py -x {x}', image='myrepo/image:latest', kind=
→˓'job')
f.run(params={"x": 5})

# define a container based function which reads its source from a git archive
f = new_function(command='training.py -x {x}', image='myrepo/image:latest', kind=
→˓'job',

source='git://github.com/mlrun/something.git')
f.run(params={"x": 5})

# define a local handler function (execute a local function handler)
f = new_function().run(task, handler=myfunction)

Parameters

• name – function name

• project – function project (none for ‘default’)

• tag – function version tag (none for ‘latest’)

• kind – runtime type (local, job, nuclio, spark, mpijob, dask, ..)

• command – command/url + args (e.g.: training.py –verbose)

• image – container image (start with ‘.’ for default registry)

• args – command line arguments (override the ones in command)

• runtime – runtime (job, nuclio, spark, dask ..) object/dict store runtime specific details
and preferences

• mode –
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runtime mode, “args” mode will push params into command template, example:
command=`mycode.py –x {xparam}` will substitute the {xparam} with the value of
the xparam param

”pass” mode will run the command as is in the container (not wrapped by mlrun), the command can use
{} for parameters like in the “args” mode

• handler – The default function handler to call for the job or nuclio function, in batch
functions (job, mpijob, ..) the handler can also be specified in the .run() command, when
not specified the entire file will be executed (as main). for nuclio functions the handler is
in the form of module:function, defaults to “main:handler”

• source – valid path to git, zip, or tar file, e.g. git://github.com/mlrun/something.git,
http://some/url/file.zip

• requirements – list of python packages or pip requirements file path, defaults to None

• kfp – reserved, flag indicating running within kubeflow pipeline

Returns function object

mlrun.run.run_local(task=None, command='', name: str = '', args: Optional[list] = None, workdir=None,
project: str = '', tag: str = '', secrets=None, handler=None, params: Optional[dict] =
None, inputs: Optional[dict] = None, artifact_path: str = '', mode: Optional[str] = None,
allow_empty_resources=None)

Run a task on function/code (.py, .ipynb or .yaml) locally,

example:

# define a task
task = new_task(params={'p1': 8}, out_path=out_path)
# run
run = run_local(spec, command='src/training.py', workdir='src')

or specify base task parameters (handler, params, ..) in the call:

run = run_local(handler=my_function, params={'x': 5})

Parameters

• task – task template object or dict (see RunTemplate)

• command – command/url/function

• name – ad hook function name

• args – command line arguments (override the ones in command)

• workdir – working dir to exec in

• project – function project (none for ‘default’)

• tag – function version tag (none for ‘latest’)

• secrets – secrets dict if the function source is remote (s3, v3io, ..)

• handler – pointer or name of a function handler

• params – input parameters (dict)

• inputs – input objects (dict of key: path)

• artifact_path – default artifact output path
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Returns run object

mlrun.run.run_pipeline(pipeline, arguments=None, project=None, experiment=None, run=None,
namespace=None, artifact_path=None, ops=None, url=None, ttl=None, remote: bool
= True)

remote KubeFlow pipeline execution

Submit a workflow task to KFP via mlrun API service

Parameters

• pipeline – KFP pipeline function or path to .yaml/.zip pipeline file

• arguments – pipeline arguments

• project – name of project

• experiment – experiment name

• run – optional, run name

• namespace – Kubernetes namespace (if not using default)

• url – optional, url to mlrun API service

• artifact_path – target location/url for mlrun artifacts

• ops – additional operators (.apply() to all pipeline functions)

• ttl – pipeline ttl in secs (after that the pods will be removed)

• remote – read kfp data from mlrun service (default=True)

Returns kubeflow pipeline id

mlrun.run.wait_for_pipeline_completion(run_id, timeout=3600, expected_statuses: Optional[List[str]] =
None, namespace=None, remote=True, project: Optional[str] =
None)

Wait for Pipeline status, timeout in sec

Parameters

• run_id – id of pipelines run

• timeout – wait timeout in sec

• expected_statuses – list of expected statuses, one of [ Succeeded | Failed | Skipped |
Error ], by default [ Succeeded ]

• namespace – k8s namespace if not default

• remote – read kfp data from mlrun service (default=True)

• project – the project of the pipeline

Returns kfp run dict

mlrun.run.wait_for_runs_completion(runs: list, sleep=3, timeout=0, silent=False)
wait for multiple runs to complete

Note: need to use watch=False in .run() so the run will not wait for completion

example:
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# run two training functions in parallel and wait for the results
inputs = {'dataset': cleaned_data}
run1 = train.run(name='train_lr', inputs=inputs, watch=False,

params={'model_pkg_class': 'sklearn.linear_model.LogisticRegression
→˓',

'label_column': 'label'})
run2 = train.run(name='train_lr', inputs=inputs, watch=False,

params={'model_pkg_class': 'sklearn.ensemble.RandomForestClassifier
→˓',

'label_column': 'label'})
completed = wait_for_runs_completion([run1, run2])

Parameters

• runs – list of run objects (the returned values of function.run())

• sleep – time to sleep between checks (in seconds)

• timeout – maximum time to wait in seconds (0 for unlimited)

• silent – set to True for silent exit on timeout

Returns list of completed runs

41.13 mlrun.runtimes

class mlrun.runtimes.BaseRuntime(metadata=None, spec=None)
Bases: mlrun.model.ModelObj

as_step(runspec: Optional[mlrun.model.RunObject] = None, handler=None, name: str = '', project: str = '',
params: Optional[dict] = None, hyperparams=None, selector='', hyper_param_options:
Optional[mlrun.model.HyperParamOptions] = None, inputs: Optional[dict] = None, outputs:
Optional[dict] = None, workdir: str = '', artifact_path: str = '', image: str = '', labels:
Optional[dict] = None, use_db=True, verbose=None, scrape_metrics=False)

Run a local or remote task.

Parameters

• runspec – run template object or dict (see RunTemplate)

• handler – name of the function handler

• name – execution name

• project – project name

• params – input parameters (dict)

• hyperparams – hyper parameters

• selector – selection criteria for hyper params

• hyper_param_options – hyper param options (selector, early stop, strategy, ..) see:
HyperParamOptions

• inputs – input objects (dict of key: path)

• outputs – list of outputs which can pass in the workflow
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• artifact_path – default artifact output path (replace out_path)

• workdir – default input artifacts path

• image – container image to use

• labels – labels to tag the job/run with ({key:val, ..})

• use_db – save function spec in the db (vs the workflow file)

• verbose – add verbose prints/logs

• scrape_metrics – whether to add the mlrun/scrape-metrics label to this run’s re-
sources

Returns KubeFlow containerOp

doc()

export(target='', format='.yaml', secrets=None, strip=True)
save function spec to a local/remote path (default to./function.yaml)

Parameters

• target – target path/url

• format – .yaml (default) or .json

• secrets – optional secrets dict/object for target path (e.g. s3)

• strip – strip status data

Returns self

fill_credentials()

full_image_path(image=None, client_version: Optional[str] = None)

is_deployed()

kind = 'base'

property metadata: mlrun.model.BaseMetadata

run(runspec: Optional[mlrun.model.RunObject] = None, handler=None, name: str = '', project: str = '',
params: Optional[dict] = None, inputs: Optional[Dict[str, str]] = None, out_path: str = '', workdir: str =
'', artifact_path: str = '', watch: bool = True, schedule: Optional[Union[str,
mlrun.api.schemas.schedule.ScheduleCronTrigger]] = None, hyperparams: Optional[Dict[str, list]] =
None, hyper_param_options: Optional[mlrun.model.HyperParamOptions] = None, verbose=None,
scrape_metrics: Optional[bool] = None, local=False, local_code_path=None, auto_build=None)→
mlrun.model.RunObject
Run a local or remote task.

Parameters

• runspec – run template object or dict (see RunTemplate)

• handler – pointer or name of a function handler

• name – execution name

• project – project name

• params – input parameters (dict)

• inputs – input objects (dict of key: path)
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• out_path – default artifact output path

• artifact_path – default artifact output path (will replace out_path)

• workdir – default input artifacts path

• watch – watch/follow run log

• schedule – ScheduleCronTrigger class instance or a standard crontab expression
string (which will be converted to the class using its from_crontab constructor), see
this link for help: https://apscheduler.readthedocs.io/en/v3.6.3/modules/triggers/cron.
html#module-apscheduler.triggers.cron

• hyperparams – dict of param name and list of values to be enumerated e.g. {“p1”:
[1,2,3]} the default strategy is grid search, can specify strategy (grid, list, random) and
other options in the hyper_param_options parameter

• hyper_param_options – dict or HyperParamOptions struct of hyper parameter
options

• verbose – add verbose prints/logs

• scrape_metrics – whether to add the mlrun/scrape-metrics label to this run’s re-
sources

• local – run the function locally vs on the runtime/cluster

• local_code_path – path of the code for local runs & debug

• auto_build – when set to True and the function require build it will be built on the
first function run, use only if you dont plan on changing the build config between runs

Returns run context object (RunObject) with run metadata, results and status

save(tag='', versioned=False, refresh=False)→ str

set_db_connection(conn, is_api=False)

set_label(key, value)

property spec: mlrun.runtimes.base.FunctionSpec

property status: mlrun.runtimes.base.FunctionStatus

store_run(runobj: mlrun.model.RunObject)

to_dict(fields=None, exclude=None, strip=False)
convert the object to a python dictionary

try_auto_mount_based_on_config()

property uri

validate_and_enrich_service_account(allowed_service_account, default_service_account)

verify_base_image()

with_code(from_file='', body=None, with_doc=True)
Update the function code This function eliminates the need to build container images every time we edit
the code

Parameters

• from_file – blank for current notebook, or path to .py/.ipynb file
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• body – will use the body as the function code

• with_doc – update the document of the function parameters

Returns function object

with_requirements(requirements: Union[str, List[str]])
add package requirements from file or list to build spec.

Parameters requirements – python requirements file path or list of packages

Returns function object

class mlrun.runtimes.DaskCluster(spec=None, metadata=None)
Bases: mlrun.runtimes.kubejob.KubejobRuntime

property client

close(running=True)

cluster()

deploy(watch=True, with_mlrun=None, skip_deployed=False, is_kfp=False, mlrun_version_specifier=None,
show_on_failure: bool = False)

deploy function, build container with dependencies

Parameters

• watch – wait for the deploy to complete (and print build logs)

• with_mlrun – add the current mlrun package to the container build

• skip_deployed – skip the build if we already have an image for the function

• mlrun_version_specifier – which mlrun package version to include (if not cur-
rent)

• builder_env – Kaniko builder pod env vars dict (for config/credentials) e.g.
builder_env={“GIT_TOKEN”: token}

• show_on_failure – show logs only in case of build failure

:return True if the function is ready (deployed)

get_status()

gpus(gpus, gpu_type='nvidia.com/gpu')

property initialized

is_deployed()

check if the function is deployed (have a valid container)

kind = 'dask'

property spec: mlrun.runtimes.daskjob.DaskSpec

property status: mlrun.runtimes.daskjob.DaskStatus

with_limits(mem=None, cpu=None, gpus=None, gpu_type='nvidia.com/gpu')
set pod cpu/memory/gpu limits by default it overrides the whole limits section, if you wish to patch specific
resources use patch=True.
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with_requests(mem=None, cpu=None)
set requested (desired) pod cpu/memory resources by default it overrides the whole requests section, if you
wish to patch specific resources use patch=True.

with_scheduler_limits(mem: Optional[str] = None, cpu: Optional[str] = None, gpus: Optional[int] =
None, gpu_type: str = 'nvidia.com/gpu', patch: bool = False)

set scheduler pod resources limits by default it overrides the whole limits section, if you wish to patch
specific resources use patch=True.

with_scheduler_requests(mem: Optional[str] = None, cpu: Optional[str] = None, patch: bool = False)
set scheduler pod resources requests by default it overrides the whole requests section, if you wish to patch
specific resources use patch=True.

with_worker_limits(mem: Optional[str] = None, cpu: Optional[str] = None, gpus: Optional[int] = None,
gpu_type: str = 'nvidia.com/gpu', patch: bool = False)

set worker pod resources limits by default it overrides the whole limits section, if you wish to patch specific
resources use patch=True.

with_worker_requests(mem: Optional[str] = None, cpu: Optional[str] = None, patch: bool = False)
set worker pod resources requests by default it overrides the whole requests section, if you wish to patch
specific resources use patch=True.

class mlrun.runtimes.HandlerRuntime(metadata=None, spec=None)
Bases: mlrun.runtimes.base.BaseRuntime, mlrun.runtimes.local.ParallelRunner

kind = 'handler'

class mlrun.runtimes.KubejobRuntime(spec=None, metadata=None)
Bases: mlrun.runtimes.pod.KubeResource

build_config(image='', base_image=None, commands: Optional[list] = None, secret=None, source=None,
extra=None, load_source_on_run=None, with_mlrun=None, auto_build=None)

specify builder configuration for the deploy operation

Parameters

• image – target image name/path

• base_image – base image name/path

• commands – list of docker build (RUN) commands e.g. [‘pip install pandas’]

• secret – k8s secret for accessing the docker registry

• source – source git/tar archive to load code from in to the context/workdir e.g.
git://github.com/mlrun/something.git#development

• extra – extra Dockerfile lines

• load_source_on_run – load the archive code into the container at runtime vs at build
time

• with_mlrun – add the current mlrun package to the container build

• auto_build – when set to True and the function require build it will be built on the
first function run, use only if you dont plan on changing the build config between runs

builder_status(watch=True, logs=True)
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deploy(watch=True, with_mlrun=None, skip_deployed=False, is_kfp=False, mlrun_version_specifier=None,
builder_env: Optional[dict] = None, show_on_failure: bool = False)→ bool

deploy function, build container with dependencies

Parameters

• watch – wait for the deploy to complete (and print build logs)

• with_mlrun – add the current mlrun package to the container build

• skip_deployed – skip the build if we already have an image for the function

• mlrun_version_specifier – which mlrun package version to include (if not cur-
rent)

• builder_env – Kaniko builder pod env vars dict (for config/credentials) e.g.
builder_env={“GIT_TOKEN”: token}

• show_on_failure – show logs only in case of build failure

:return True if the function is ready (deployed)

deploy_step(image=None, base_image=None, commands: Optional[list] = None, secret_name='',
with_mlrun=True, skip_deployed=False)

is_deployed()

check if the function is deployed (have a valid container)

kind = 'job'

with_source_archive(source, workdir=None, handler=None, pull_at_runtime=True)
load the code from git/tar/zip archive at runtime or build

Parameters

• source – valid path to git, zip, or tar file, e.g. git://github.com/mlrun/something.git
http://some/url/file.zip

• handler – default function handler

• workdir – working dir relative to the archive root or absolute (e.g. ‘./subdir’)

• pull_at_runtime – load the archive into the container at job runtime vs on
build/deploy

class mlrun.runtimes.LocalRuntime(metadata=None, spec=None)
Bases: mlrun.runtimes.base.BaseRuntime, mlrun.runtimes.local.ParallelRunner

is_deployed()

kind = 'local'

property spec: mlrun.runtimes.local.LocalFunctionSpec

to_job(image='')

with_source_archive(source, workdir=None, handler=None, target_dir=None)
load the code from git/tar/zip archive at runtime or build

Parameters

• source – valid path to git, zip, or tar file, e.g. git://github.com/mlrun/something.git
http://some/url/file.zip

41.13. mlrun.runtimes 489



mlrun, Release UNKNOWN

• handler – default function handler

• workdir – working dir relative to the archive root or absolute (e.g. ‘./subdir’)

• target_dir – local target dir for repo clone (by default its <current-dir>/code)

class mlrun.runtimes.RemoteRuntime(spec=None, metadata=None)
Bases: mlrun.runtimes.pod.KubeResource

add_secrets_config_to_spec()

add_trigger(name, spec)
add a nuclio trigger object/dict

Parameters

• name – trigger name

• spec – trigger object or dict

add_v3io_stream_trigger(stream_path, name='stream', group='serving', seek_to='earliest', shards=1,
extra_attributes=None, ack_window_size=None, **kwargs)

add v3io stream trigger to the function

Parameters

• stream_path – v3io stream path (e.g. ‘v3io:///projects/myproj/stream1’)

• name – trigger name

• group – consumer group

• seek_to – start seek from: “earliest”, “latest”, “time”, “sequence”

• shards – number of shards (used to set number of replicas)

• extra_attributes – key/value dict with extra trigger attributes

• ack_window_size – stream ack window size (the consumer group will be updated
with the event id - ack_window_size, on failure the events in the window will be re-
transmitted)

• kwargs – extra V3IOStreamTrigger class attributes

add_volume(local, remote, name='fs', access_key='', user='')

deploy(dashboard='', project='', tag='', verbose=False, auth_info:
Optional[mlrun.api.schemas.auth.AuthInfo] = None, builder_env: Optional[dict] = None)

Deploy the nuclio function to the cluster

Parameters

• dashboard – address of the nuclio dashboard service (keep blank for current cluster)

• project – project name

• tag – function tag

• verbose – set True for verbose logging

• auth_info – service AuthInfo

• builder_env – env vars dict for source archive config/credentials e.g.
builder_env={“GIT_TOKEN”: token}
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deploy_step(dashboard='', project='', models=None, env=None, tag=None, verbose=None,
use_function_from_db=None)

return as a Kubeflow pipeline step (ContainerOp), recommended to use mlrun.deploy_function() instead

from_image(image)

invoke(path: str, body: Optional[Union[str, bytes, dict]] = None, method: Optional[str] = None, headers:
Optional[dict] = None, dashboard: str = '', force_external_address: bool = False, auth_info:
Optional[mlrun.api.schemas.auth.AuthInfo] = None)

Invoke the remote (live) function and return the results

example:

function.invoke("/api", body={"inputs": x})

Parameters

• path – request sub path (e.g. /images)

• body – request body (str, bytes or a dict for json requests)

• method – HTTP method (GET, PUT, ..)

• headers – key/value dict with http headers

• dashboard – nuclio dashboard address

• force_external_address – use the external ingress URL

• auth_info – service AuthInfo

kind = 'remote'

set_config(key, value)

property spec: mlrun.runtimes.function.NuclioSpec

property status: mlrun.runtimes.function.NuclioStatus

with_http(workers=8, port=0, host=None, paths=None, canary=None, secret=None, worker_timeout:
Optional[int] = None, gateway_timeout: Optional[int] = None, trigger_name=None,
annotations=None, extra_attributes=None)

update/add nuclio HTTP trigger settings

Note: gateway timeout is the maximum request time before an error is returned, while the worker timeout
if the max time a request will wait for until it will start processing, gateway_timeout must be greater than
the worker_timeout.

Parameters

• workers – number of worker processes (default=8)

• port – TCP port

• host – hostname

• paths – list of sub paths

• canary – k8s ingress canary (% traffic value between 0 to 100)

• secret – k8s secret name for SSL certificate
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• worker_timeout – worker wait timeout in sec (how long a message should wait in
the worker queue before an error is returned)

• gateway_timeout – nginx ingress timeout in sec (request timeout, when will the
gateway return an error)

• trigger_name – alternative nuclio trigger name

• annotations – key/value dict of ingress annotations

• extra_attributes – key/value dict of extra nuclio trigger attributes

Returns function object (self)

with_node_selection(**kwargs)
Enables to control on which k8s node the job will run

Parameters

• node_name – The name of the k8s node

• node_selector – Label selector, only nodes with matching labels will be eligible to
be picked

• affinity – Expands the types of constraints you can express - see https://kubernetes.
io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity for
details

• tolerations – Tolerations are applied to pods, and allow (but do not require) the pods
to schedule onto nodes with matching taints - see https://kubernetes.io/docs/concepts/
scheduling-eviction/taint-and-toleration for details

with_preemption_mode(**kwargs)
Preemption mode controls whether pods can be scheduled on preemptible nodes. Tolerations, node selec-
tor, and affinity are populated on preemptible nodes corresponding to the function spec.

The supported modes are:

• allow - The function can be scheduled on preemptible nodes

• constrain - The function can only run on preemptible nodes

• prevent - The function cannot be scheduled on preemptible nodes

• none - No preemptible configuration will be applied on the function

The default preemption mode is configurable in mlrun.mlconf.function_defaults.preemption_mode, by
default it’s set to prevent

Parameters mode – allow | constrain | prevent | none defined in PreemptionModes

with_priority_class(**kwargs)
Enables to control the priority of the pod If not passed - will default to ml-
run.mlconf.default_function_priority_class_name

Parameters name – The name of the priority class

with_source_archive(source, workdir=None, handler=None, runtime='')
Load nuclio function from remote source

Note: remote source may require credentials, those can be stored in the project secrets or
passed in the function.deploy() using the builder_env dict, see the required credentials per
source: v3io - “V3IO_ACCESS_KEY”. git - “GIT_USERNAME”, “GIT_PASSWORD”.
AWS S3 - “AWS_ACCESS_KEY_ID”, “AWS_SECRET_ACCESS_KEY” or
“AWS_SESSION_TOKEN”.
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param source a full path to the nuclio function source (code entry) to load the func-
tion from

param handler a path to the function’s handler, including path inside archive/git
repo

param workdir working dir relative to the archive root (e.g. ‘subdir’)

param runtime (optional) the runtime of the function (defaults to python:3.7)

Examples::

git:

fn.with_source_archive(“git://github.com/org/repo#my-branch”, han-
dler=”main:handler”, workdir=”path/inside/repo”)

s3: fn.spec.nuclio_runtime = “golang” fn.with_source_archive(“s3://my-
bucket/path/in/bucket/my-functions-archive”,

handler=”my_func:Handler”, workdir=”path/inside/functions/archive”, run-
time=”golang”)

)

with_v3io(local='', remote='')
Add v3io volume to the function

Parameters

• local – local path (mount path inside the function container)

• remote – v3io path

class mlrun.runtimes.RemoteSparkRuntime(spec=None, metadata=None)
Bases: mlrun.runtimes.kubejob.KubejobRuntime

default_image = '.remote-spark-default-image'

deploy(watch=True, with_mlrun=None, skip_deployed=False, is_kfp=False, mlrun_version_specifier=None,
show_on_failure: bool = False)

deploy function, build container with dependencies

Parameters

• watch – wait for the deploy to complete (and print build logs)

• with_mlrun – add the current mlrun package to the container build

• skip_deployed – skip the build if we already have an image for the function

• mlrun_version_specifier – which mlrun package version to include (if not cur-
rent)

• builder_env – Kaniko builder pod env vars dict (for config/credentials) e.g.
builder_env={“GIT_TOKEN”: token}

• show_on_failure – show logs only in case of build failure

:return True if the function is ready (deployed)

classmethod deploy_default_image()
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is_deployed()

check if the function is deployed (have a valid container)

kind = 'remote-spark'

property spec: mlrun.runtimes.remotesparkjob.RemoteSparkSpec

with_security_context(security_context:
kubernetes.client.models.v1_security_context.V1SecurityContext)

With security context is not supported for spark runtime. Driver / Executor processes run with uid / gid
1000 as long as security context is not defined. If in the future we want to support setting security context
it will work only from spark version 3.2 onwards.

with_spark_service(spark_service, provider='iguazio')
Attach spark service to function

class mlrun.runtimes.ServingRuntime(spec=None, metadata=None)
Bases: mlrun.runtimes.function.RemoteRuntime

MLRun Serving Runtime

add_child_function(name, url=None, image=None, requirements=None, kind=None)
in a multi-function pipeline add child function

example:

fn.add_child_function('enrich', './enrich.ipynb', 'mlrun/mlrun')

Parameters

• name – child function name

• url – function/code url, support .py, .ipynb, .yaml extensions

• image – base docker image for the function

• requirements – py package requirements file path OR list of packages

• kind – mlrun function/runtime kind

:return function object

add_model(key: str, model_path: Optional[str] = None, class_name: Optional[str] = None, model_url:
Optional[str] = None, handler: Optional[str] = None, router_step: Optional[str] = None,
child_function: Optional[str] = None, **class_args)

add ml model and/or route to the function.

Example, create a function (from the notebook), add a model class, and deploy:

fn = code_to_function(kind='serving')
fn.add_model('boost', model_path, model_class='MyClass', my_arg=5)
fn.deploy()

only works with router topology, for nested topologies (model under router under flow) need to add router
to flow and use router.add_route()

Parameters

• key – model api key (or name:version), will determine the relative url/path

• model_path – path to mlrun model artifact or model directory file/object path
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• class_name – V2 Model python class name or a model class instance (can also mod-
ule.submodule.class and it will be imported automatically)

• model_url – url of a remote model serving endpoint (cannot be used with
model_path)

• handler – for advanced users!, override default class handler name (do_event)

• router_step – router step name (to determine which router we add the model to in
graphs with multiple router steps)

• child_function – child function name, when the model runs in a child function

• class_args – extra kwargs to pass to the model serving class __init__ (can be read
in the model using .get_param(key) method)

add_secrets_config_to_spec()

deploy(dashboard='', project='', tag='', verbose=False, auth_info:
Optional[mlrun.api.schemas.auth.AuthInfo] = None, builder_env: Optional[dict] = None)

deploy model serving function to a local/remote cluster

Parameters

• dashboard – remote nuclio dashboard url (blank for local or auto detection)

• project – optional, override function specified project name

• tag – specify unique function tag (a different function service is created for every tag)

• verbose – verbose logging

• auth_info – The auth info to use to communicate with the Nuclio dashboard, required
only when providing dashboard

• builder_env – env vars dict for source archive config/credentials e.g.
builder_env={“GIT_TOKEN”: token}

kind = 'serving'

plot(filename=None, format=None, source=None, **kw)
plot/save graph using graphviz

example:

serving_fn = mlrun.new_function("serving", image="mlrun/mlrun", kind="serving")
serving_fn.add_model('my-classifier',model_path=model_path,

class_name='mlrun.frameworks.sklearn.SklearnModelServer')
serving_fn.plot(rankdir="LR")

Parameters

• filename – target filepath for the image (None for the notebook)

• format – The output format used for rendering ('pdf', 'png', etc.)

• source – source step to add to the graph

• kw – kwargs passed to graphviz, e.g. rankdir=”LR” (see: https://graphviz.org/doc/
info/attrs.html)

Returns graphviz graph object

41.13. mlrun.runtimes 495

https://graphviz.org/doc/info/attrs.html
https://graphviz.org/doc/info/attrs.html


mlrun, Release UNKNOWN

remove_states(keys: list)
remove one, multiple, or all states/models from the spec (blank list for all)

set_topology(topology=None, class_name=None, engine=None, exist_ok=False, **class_args)→
Union[mlrun.serving.states.RootFlowStep, mlrun.serving.states.RouterStep]

set the serving graph topology (router/flow) and root class or params

examples:

# simple model router topology
graph = fn.set_topology("router")
fn.add_model(name, class_name="ClassifierModel", model_path=model_uri)

# async flow topology
graph = fn.set_topology("flow", engine="async")
graph.to("MyClass").to(name="to_json", handler="json.dumps").respond()

topology options are:

router - root router + multiple child route states/models
route is usually determined by the path (route key/name)
can specify special router class and router arguments

flow - workflow (DAG) with a chain of states
flow support "sync" and "async" engines, branches are not allowed in␣

→˓sync mode
when using async mode calling state.respond() will mark the state as␣

→˓the
one which generates the (REST) call response

Parameters

• topology –

– graph topology, router or flow

• class_name –

– optional for router, router class name/path or router object

• engine –

– optional for flow, sync or async engine (default to async)

• exist_ok –

– allow overriding existing topology

• class_args –

– optional, router/flow class init args

:return graph object (fn.spec.graph)

set_tracking(stream_path: Optional[str] = None, batch: Optional[int] = None, sample: Optional[int] =
None, stream_args: Optional[dict] = None)

set tracking stream parameters:

Parameters
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• stream_path – path/url of the tracking stream e.g. v3io:///users/mike/mystream you
can use the “dummy://” path for test/simulation

• batch – micro batch size (send micro batches of N records at a time)

• sample – sample size (send only one of N records)

• stream_args – stream initialization parameters, e.g. shards, retention_in_hours, ..

property spec: mlrun.runtimes.serving.ServingSpec

to_mock_server(namespace=None, current_function='*', track_models=False, workdir=None, **kwargs)
→ mlrun.serving.server.GraphServer

create mock server object for local testing/emulation

Parameters

• namespace – one or list of namespaces/modules to search the steps classes/functions
in

• log_level – log level (error | info | debug)

• current_function – specify if you want to simulate a child function, * for all func-
tions

• track_models – allow model tracking (disabled by default in the mock server)

• workdir – working directory to locate the source code (if not the current one)

with_secrets(kind, source)
register a secrets source (file, env or dict)

read secrets from a source provider to be used in workflows, example:

task.with_secrets('file', 'file.txt')
task.with_secrets('inline', {'key': 'val'})
task.with_secrets('env', 'ENV1,ENV2')
task.with_secrets('vault', ['secret1', 'secret2'...])

# If using an empty secrets list [] then all accessible secrets will be␣
→˓available.
task.with_secrets('vault', [])

# To use with Azure key vault, a k8s secret must be created with the following␣
→˓keys:
# kubectl -n <namespace> create secret generic azure-key-vault-secret \
# --from-literal=tenant_id=<service principal tenant ID> \
# --from-literal=client_id=<service principal client ID> \
# --from-literal=secret=<service principal secret key>

task.with_secrets('azure_vault', {
'name': 'my-vault-name',
'k8s_secret': 'azure-key-vault-secret',
# An empty secrets list may be passed ('secrets': []) to access all vault␣

→˓secrets.
'secrets': ['secret1', 'secret2'...]

})

Parameters
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• kind – secret type (file, inline, env)

• source – secret data or link (see example)

Returns The Runtime (function) object

41.14 mlrun.serving

class mlrun.serving.GraphContext(level='info', logger=None, server=None, nuclio_context=None)
Bases: object

Graph context object

get_param(key: str, default=None)

get_remote_endpoint(name, external=True)
return the remote nuclio/serving function http(s) endpoint given its name

Parameters

• name – the function name/uri in the form [project/]function-name[:tag]

• external – return the external url (returns the external url by default)

get_secret(key: str)

push_error(event, message, source=None, **kwargs)

property server

class mlrun.serving.GraphServer(graph=None, parameters=None, load_mode=None, function_uri=None,
verbose=False, version=None, functions=None, graph_initializer=None,
error_stream=None, track_models=None, secret_sources=None,
default_content_type=None)

Bases: mlrun.model.ModelObj

property graph: Union[mlrun.serving.states.RootFlowStep,
mlrun.serving.states.RouterStep]

init_object(namespace)

init_states(context, namespace, resource_cache:
Optional[mlrun.datastore.store_resources.ResourceCache] = None, logger=None,
is_mock=False)

for internal use, initialize all steps (recursively)

kind = 'server'

run(event, context=None, get_body=False, extra_args=None)

set_current_function(function)
set which child function this server is currently running on

set_error_stream(error_stream)

set/initialize the error notification stream
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test(path: str = '/', body: Optional[Union[str, bytes, dict]] = None, method: str = '', headers: Optional[str]
= None, content_type: Optional[str] = None, silent: bool = False, get_body: bool = True, event_id:
Optional[str] = None, trigger: Optional[mlrun.serving.server.MockTrigger] = None, offset=None,
time=None)
invoke a test event into the server to simulate/test server behavior

example:

server = create_graph_server()
server.add_model("my", class_name=MyModelClass, model_path="{path}", z=100)
print(server.test("my/infer", testdata))

Parameters

• path – api path, e.g. (/{router.url_prefix}/{model-name}/..) path

• body – message body (dict or json str/bytes)

• method – optional, GET, POST, ..

• headers – optional, request headers, ..

• content_type – optional, http mime type

• silent – don’t raise on error responses (when not 20X)

• get_body – return the body as py object (vs serialize response into json)

• event_id – specify the unique event ID (by default a random value will be generated)

• trigger – nuclio trigger info or mlrun.serving.server.MockTrigger class (holds kind
and name)

• offset – trigger offset (for streams)

• time – event time Datetime or str, default to now()

wait_for_completion()

wait for async operation to complete

class mlrun.serving.QueueStep(name: Optional[str] = None, path: Optional[str] = None, after:
Optional[list] = None, shards: Optional[int] = None, retention_in_hours:
Optional[int] = None, trigger_args: Optional[dict] = None, **options)

Bases: mlrun.serving.states.BaseStep

queue step, implement an async queue or represent a stream

after_state(after)

after_step(after)
specify the previous step name

property async_object

default_shape = 'cds'

init_object(context, namespace, mode='sync', reset=False, **extra_kwargs)
init the step class

kind = 'queue'
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run(event, *args, **kwargs)

class mlrun.serving.RouterStep(class_name: Optional[Union[str, type]] = None, class_args: Optional[dict]
= None, handler: Optional[str] = None, routes: Optional[list] = None,
name: Optional[str] = None, function: Optional[str] = None, input_path:
Optional[str] = None, result_path: Optional[str] = None)

Bases: mlrun.serving.states.TaskStep

router step, implement routing logic for running child routes

add_route(key, route=None, class_name=None, handler=None, function=None, **class_args)
add child route step or class to the router

Parameters

• key – unique name (and route path) for the child step

• route – child step object (Task, ..)

• class_name – class name to build the route step from (when route is not provided)

• class_args – class init arguments

• handler – class handler to invoke on run/event

• function – function this step should run in

clear_children(routes: list)
clear child steps (routes)

default_shape = 'doubleoctagon'

get_children()

get child steps (routes)

init_object(context, namespace, mode='sync', reset=False, **extra_kwargs)
init the step class

kind = 'router'

plot(filename=None, format=None, source=None, **kw)
plot/save graph using graphviz

Parameters

• filename – target filepath for the image (None for the notebook)

• format – The output format used for rendering ('pdf', 'png', etc.)

• source – source step to add to the graph

• kw – kwargs passed to graphviz, e.g. rankdir=”LR” (see: https://graphviz.org/doc/
info/attrs.html)

Returns graphviz graph object

property routes

child routes/steps, traffic is routed to routes based on router logic

class mlrun.serving.TaskStep(class_name: Optional[Union[str, type]] = None, class_args: Optional[dict] =
None, handler: Optional[str] = None, name: Optional[str] = None, after:
Optional[list] = None, full_event: Optional[bool] = None, function:
Optional[str] = None, responder: Optional[bool] = None, input_path:
Optional[str] = None, result_path: Optional[str] = None)
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Bases: mlrun.serving.states.BaseStep

task execution step, runs a class or handler

property async_object

return the sync or async (storey) class instance

clear_object()

init_object(context, namespace, mode='sync', reset=False, **extra_kwargs)
init the step class

kind = 'task'

respond()

mark this step as the responder.

step output will be returned as the flow result, no other step can follow

run(event, *args, **kwargs)
run this step, in async flows the run is done through storey

class mlrun.serving.V2ModelServer(context=None, name: Optional[str] = None, model_path: Optional[str]
= None, model=None, protocol=None, input_path: Optional[str] =
None, result_path: Optional[str] = None, **kwargs)

Bases: mlrun.serving.utils.StepToDict

base model serving class (v2), using similar API to KFServing v2 and Triton

base model serving class (v2), using similar API to KFServing v2 and Triton

The class is initialized automatically by the model server and can run locally as part of a nuclio serverless function,
or as part of a real-time pipeline default model url is: /v2/models/<model>[/versions/<ver>]/operation

You need to implement two mandatory methods: load() - download the model file(s) and load the model into
memory predict() - accept request payload and return prediction/inference results

you can override additional methods : preprocess, validate, postprocess, explain you can add custom api endpoint
by adding method op_xx(event), will be invoked by calling the <model-url>/xx (operation = xx)

model server classes are subclassed (subclass implements the load() and predict() methods) the subclass can be
added to a serving graph or to a model router

defining a sub class:

class MyClass(V2ModelServer):
def load(self):

# load and initialize the model and/or other elements
model_file, extra_data = self.get_model(suffix='.pkl')
self.model = load(open(model_file, "rb"))

def predict(self, request):
events = np.array(request['inputs'])
dmatrix = xgb.DMatrix(events)
result: xgb.DMatrix = self.model.predict(dmatrix)
return {"outputs": result.tolist()}

usage example:
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# adding a model to a serving graph using the subclass MyClass
# MyClass will be initialized with the name "my", the model_path, and an arg called␣
→˓my_param
graph = fn.set_topology("router")
fn.add_model("my", class_name="MyClass", model_path="<model-uri>>", my_param=5)

Parameters

• context – for internal use (passed in init)

• name – step name

• model_path – model file/dir or artifact path

• model – model object (for local testing)

• protocol – serving API protocol (default “v2”)

• input_path – when specified selects the key/path in the event to use as body this require
that the event body will behave like a dict, example: event: {“data”: {“a”: 5, “b”: 7}},
input_path=”data.b” means request body will be 7

• result_path – selects the key/path in the event to write the results to this require that the
event body will behave like a dict, example: event: {“x”: 5} , result_path=”resp” means
the returned response will be written to event[“y”] resulting in {“x”: 5, “resp”: <result>}

• kwargs – extra arguments (can be accessed using self.get_param(key))

do_event(event, *args, **kwargs)
main model event handler method

explain(request: Dict)→ Dict
model explain operation

get_model(suffix='')
get the model file(s) and metadata from model store

the method returns a path to the model file and the extra data (dict of dataitem objects) it also loads the
model metadata into the self.model_spec attribute, allowing direct access to all the model metadata at-
tributes.

get_model is usually used in the model .load() method to init the model .. rubric:: Examples

def load(self):
model_file, extra_data = self.get_model(suffix='.pkl')
self.model = load(open(model_file, "rb"))
categories = extra_data['categories'].as_df()

Parameters suffix (str) – optional, model file suffix (when the model_path is a directory)

Returns

• str – (local) model file

• dict – extra dataitems dictionary

get_param(key: str, default=None)
get param by key (specified in the model or the function)
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load()

model loading function, see also .get_model() method

logged_results(request: dict, response: dict, op: str)
hook for controlling which results are tracked by the model monitoring

this hook allows controlling which input/output data is logged by the model monitoring allow filtering
out columns or adding custom values, can also be used to monitor derived metrics for example in image
classification calculate and track the RGB values vs the image bitmap

the request[“inputs”] holds a list of input values/arrays, the response[“outputs”] holds a list of correspond-
ing output values/arrays (the schema of the input/output fields is stored in the model object), this method
should return lists of alternative inputs and outputs which will be monitored

Parameters

• request – predict/explain request, see model serving docs for details

• response – result from the model predict/explain (after postprocess())

• op – operation (predict/infer or explain)

Returns the input and output lists to track

post_init(mode='sync')
sync/async model loading, for internal use

postprocess(request: Dict)→ Dict
postprocess, before returning response

predict(request: Dict)→ Dict
model prediction operation

preprocess(request: Dict, operation)→ Dict
preprocess the event body before validate and action

set_metric(name: str, value)
set real time metric (for model monitoring)

validate(request, operation)
validate the event body (after preprocess)

class mlrun.serving.VotingEnsemble(context=None, name: Optional[str] = None, routes=None, protocol:
Optional[str] = None, url_prefix: Optional[str] = None, health_prefix:
Optional[str] = None, vote_type=None, executor_type=None,
prediction_col_name=None, **kwargs)

Bases: mlrun.serving.routers.BaseModelRouter

Voting Ensemble

The VotingEnsemble class enables you to apply prediction logic on top of the different added models.

You can use it by calling: - <prefix>/<model>[/versions/<ver>]/operation

Sends the event to the specific <model>[/versions/<ver>]

• <prefix>/operation Sends the event to all models and applies vote(self, event)

The VotingEnsemble applies the following logic: Incoming Event -> Router Preprocessing -> Send to model/s
-> Apply all model/s logic (Preprocessing -> Prediction -> Postprocessing) -> Router Voting logic -> Router
Postprocessing -> Response
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This enables you to do the general preprocessing and postprocessing steps once on the router level, with only
model-specific adjustments at the model level.

• When enabling model tracking via set_tracking() the ensemble logic

predictions will appear with model name as the given VotingEnsemble name or “VotingEnsemble” by default.

Example:

# Define a serving function
# Note: You can point the function to a file containing you own Router or␣
→˓Classifier Model class
# this basic class supports sklearn based models (with `<model>.predict()` api)
fn = mlrun.code_to_function(name='ensemble',

kind='serving',
filename='model-server.py'
image='mlrun/ml-models')

# Set the router class
# You can set your own classes by simply changing the `class_name`
fn.set_topology(class_name='mlrun.serving.routers.VotingEnsemble')

# Add models
fn.add_model(<model_name>, <model_path>, <model_class_name>)
fn.add_model(<model_name>, <model_path>, <model_class_name>)

The VotingEnsemble applies its logic using the logic(predictions) function. The logic() function receives an
array of (# samples, # predictors) which you can then use to apply whatever logic you may need.

If we use this VotingEnsemble as an example, the logic() function tries to figure out whether you are trying to do
a classification or a regression prediction by the prediction type or by the given vote_type parameter. Then we
apply the appropriate max_vote() or mean_vote() which calculates the actual prediction result and returns it as
the VotingEnsemble’s prediction.

Parameters

• context – for internal use (passed in init)

• name – step name

• routes – for internal use (routes passed in init)

• protocol – serving API protocol (default “v2”)

• url_prefix – url prefix for the router (default /v2/models)

• health_prefix – health api url prefix (default /v2/health)

• input_path – when specified selects the key/path in the event to use as body this require
that the event body will behave like a dict, example: event: {“data”: {“a”: 5, “b”: 7}},
input_path=”data.b” means request body will be 7

• result_path – selects the key/path in the event to write the results to this require that the
event body will behave like a dict, example: event: {“x”: 5} , result_path=”resp” means
the returned response will be written to event[“y”] resulting in {“x”: 5, “resp”: <result>}

• vote_type – Voting type to be used (from VotingTypes). by default will try to self-deduct
upon the first event:

– float prediction type: regression

– int prediction type: classification
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• executor_type – Parallelism mechanism, out of ParallelRunnerModes, by default
threads

• prediction_col_name – The dict key for the predictions column in the model’s re-
sponses output. Example: If the model returns

{id: <id>, model_name: <name>, outputs: {. . . , prediction: [<predictions>],
. . . }} the prediction_col_name should be prediction.

by default, prediction

• kwargs – extra arguments

do_event(event, *args, **kwargs)
Handles incoming requests.

Parameters event (nuclio.Event) – Incoming request as a nuclio.Event.

Returns Event response after running the requested logic

Return type Response

extract_results_from_response(response)
Extracts the prediction from the model response. This function is used to allow multiple model return
types. and allow for easy extension to the user’s ensemble and models best practices.

Parameters response (Union[List, Dict]) – The model response’s output field.

Returns The model’s predictions

Return type List

logic(predictions)

post_init(mode='sync')

validate(request)
Validate the event body (after preprocessing)

Parameters request (dict) – Event body.

Returns Event body after validation

Return type dict

Raises

• Exception – inputs key not found in request

• Exception – inputs should be of type List

mlrun.serving.create_graph_server(parameters={}, load_mode=None, graph=None, verbose=False,
current_function=None, **kwargs)→
mlrun.serving.server.GraphServer

create graph server host/emulator for local or test runs

Usage example:

server = create_graph_server(graph=RouterStep(), parameters={})
server.init(None, globals())
server.graph.add_route("my", class_name=MyModelClass, model_path="{path}", z=100)
print(server.test("/v2/models/my/infer", testdata))
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class mlrun.serving.remote.BatchHttpRequests(url: Optional[str] = None, subpath: Optional[str] =
None, method: Optional[str] = None, headers:
Optional[dict] = None, url_expression: Optional[str] =
None, body_expression: Optional[str] = None,
return_json: bool = True, input_path: Optional[str] =
None, result_path: Optional[str] = None, retries=None,
backoff_factor=None, timeout=None, **kwargs)

class for calling remote endpoints in parallel

class for calling remote endpoints in parallel

sync and async graph step implementation for request/resp to remote service (class shortcut = “$remote”) url
can be an http(s) url (e.g. “https://myservice/path”) or an mlrun function uri ([project/]name). alternatively the
url_expression can be specified to build the url from the event (e.g. “event[‘url’]”).

example pipeline:

function = mlrun.new_function("myfunc", kind="serving")
flow = function.set_topology("flow", engine="async")
flow.to(

BatchHttpRequests(
url_expression="event['url']",
body_expression="event['data']",
method="POST",
input_path="req",
result_path="resp",

)
).respond()

server = function.to_mock_server()
# request contains a list of elements, each with url and data
request = [{"url": f"{base_url}/{i}", "data": i} for i in range(2)]
resp = server.test(body={"req": request})

Parameters

• url – http(s) url or function [project/]name to call

• subpath – path (which follows the url)

• method – HTTP method (GET, POST, ..), default to POST

• headers – dictionary with http header values

• url_expression – an expression for getting the url from the event, e.g. “event[‘url’]”

• body_expression – an expression for getting the request body from the event, e.g.
“event[‘data’]”

• return_json – indicate the returned value is json, and convert it to a py object

• input_path – when specified selects the key/path in the event to use as body this require
that the event body will behave like a dict, example: event: {“data”: {“a”: 5, “b”: 7}},
input_path=”data.b” means request body will be 7

• result_path – selects the key/path in the event to write the results to this require that the
event body will behave like a dict, example: event: {“x”: 5} , result_path=”resp” means
the returned response will be written to event[“y”] resulting in {“x”: 5, “resp”: <result>}

• retries – number of retries (in exponential backoff)
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• backoff_factor – A backoff factor in seconds to apply between attempts after the sec-
ond try

• timeout – How long to wait for the server to send data before giving up, float in seconds

__init__(url: Optional[str] = None, subpath: Optional[str] = None, method: Optional[str] = None,
headers: Optional[dict] = None, url_expression: Optional[str] = None, body_expression:
Optional[str] = None, return_json: bool = True, input_path: Optional[str] = None, result_path:
Optional[str] = None, retries=None, backoff_factor=None, timeout=None, **kwargs)

class for calling remote endpoints in parallel

sync and async graph step implementation for request/resp to remote service (class shortcut = “$remote”)
url can be an http(s) url (e.g. “https://myservice/path”) or an mlrun function uri ([project/]name). alterna-
tively the url_expression can be specified to build the url from the event (e.g. “event[‘url’]”).

example pipeline:

function = mlrun.new_function("myfunc", kind="serving")
flow = function.set_topology("flow", engine="async")
flow.to(

BatchHttpRequests(
url_expression="event['url']",
body_expression="event['data']",
method="POST",
input_path="req",
result_path="resp",

)
).respond()

server = function.to_mock_server()
# request contains a list of elements, each with url and data
request = [{"url": f"{base_url}/{i}", "data": i} for i in range(2)]
resp = server.test(body={"req": request})

Parameters

• url – http(s) url or function [project/]name to call

• subpath – path (which follows the url)

• method – HTTP method (GET, POST, ..), default to POST

• headers – dictionary with http header values

• url_expression – an expression for getting the url from the event, e.g. “event[‘url’]”

• body_expression – an expression for getting the request body from the event, e.g.
“event[‘data’]”

• return_json – indicate the returned value is json, and convert it to a py object

• input_path – when specified selects the key/path in the event to use as body this
require that the event body will behave like a dict, example: event: {“data”: {“a”: 5,
“b”: 7}}, input_path=”data.b” means request body will be 7

• result_path – selects the key/path in the event to write the results to this require that
the event body will behave like a dict, example: event: {“x”: 5} , result_path=”resp”
means the returned response will be written to event[“y”] resulting in {“x”: 5, “resp”:
<result>}
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• retries – number of retries (in exponential backoff)

• backoff_factor – A backoff factor in seconds to apply between attempts after the
second try

• timeout – How long to wait for the server to send data before giving up, float in
seconds

class mlrun.serving.remote.RemoteStep(url: str, subpath: Optional[str] = None, method: Optional[str] =
None, headers: Optional[dict] = None, url_expression:
Optional[str] = None, body_expression: Optional[str] = None,
return_json: bool = True, input_path: Optional[str] = None,
result_path: Optional[str] = None, max_in_flight=None,
retries=None, backoff_factor=None, timeout=None, **kwargs)

class for calling remote endpoints

class for calling remote endpoints

sync and async graph step implementation for request/resp to remote service (class shortcut = “$remote”) url
can be an http(s) url (e.g. “https://myservice/path”) or an mlrun function uri ([project/]name). alternatively the
url_expression can be specified to build the url from the event (e.g. “event[‘url’]”).

example pipeline:

flow = function.set_topology("flow", engine="async")
flow.to(name="step1", handler="func1")

.to(RemoteStep(name="remote_echo", url="https://myservice/path", method="POST"))

.to(name="laststep", handler="func2").respond()

Parameters

• url – http(s) url or function [project/]name to call

• subpath – path (which follows the url), use $path to use the event.path

• method – HTTP method (GET, POST, ..), default to POST

• headers – dictionary with http header values

• url_expression – an expression for getting the url from the event, e.g. “event[‘url’]”

• body_expression – an expression for getting the request body from the event, e.g.
“event[‘data’]”

• return_json – indicate the returned value is json, and convert it to a py object

• input_path – when specified selects the key/path in the event to use as body this require
that the event body will behave like a dict, example: event: {“data”: {“a”: 5, “b”: 7}},
input_path=”data.b” means request body will be 7

• result_path – selects the key/path in the event to write the results to this require that the
event body will behave like a dict, example: event: {“x”: 5} , result_path=”resp” means
the returned response will be written to event[“y”] resulting in {“x”: 5, “resp”: <result>}

• retries – number of retries (in exponential backoff)

• backoff_factor – A backoff factor in seconds to apply between attempts after the sec-
ond try

• timeout – How long to wait for the server to send data before giving up, float in seconds
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__init__(url: str, subpath: Optional[str] = None, method: Optional[str] = None, headers: Optional[dict] =
None, url_expression: Optional[str] = None, body_expression: Optional[str] = None, return_json:
bool = True, input_path: Optional[str] = None, result_path: Optional[str] = None,
max_in_flight=None, retries=None, backoff_factor=None, timeout=None, **kwargs)

class for calling remote endpoints

sync and async graph step implementation for request/resp to remote service (class shortcut = “$remote”)
url can be an http(s) url (e.g. “https://myservice/path”) or an mlrun function uri ([project/]name). alterna-
tively the url_expression can be specified to build the url from the event (e.g. “event[‘url’]”).

example pipeline:

flow = function.set_topology("flow", engine="async")
flow.to(name="step1", handler="func1")

.to(RemoteStep(name="remote_echo", url="https://myservice/path", method=
→˓"POST"))

.to(name="laststep", handler="func2").respond()

Parameters

• url – http(s) url or function [project/]name to call

• subpath – path (which follows the url), use $path to use the event.path

• method – HTTP method (GET, POST, ..), default to POST

• headers – dictionary with http header values

• url_expression – an expression for getting the url from the event, e.g. “event[‘url’]”

• body_expression – an expression for getting the request body from the event, e.g.
“event[‘data’]”

• return_json – indicate the returned value is json, and convert it to a py object

• input_path – when specified selects the key/path in the event to use as body this
require that the event body will behave like a dict, example: event: {“data”: {“a”: 5,
“b”: 7}}, input_path=”data.b” means request body will be 7

• result_path – selects the key/path in the event to write the results to this require that
the event body will behave like a dict, example: event: {“x”: 5} , result_path=”resp”
means the returned response will be written to event[“y”] resulting in {“x”: 5, “resp”:
<result>}

• retries – number of retries (in exponential backoff)

• backoff_factor – A backoff factor in seconds to apply between attempts after the
second try

• timeout – How long to wait for the server to send data before giving up, float in
seconds
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41.15 storey.transformations - Graph transformations

Graph transformations are contained in the storey.transformations module. For convenience, they can also be
imported directly from the storey package. Note that the transformation functions are actually encapsulated in classes,
so that they can be referenced by name of class from graph step definitions.

class storey.transformations.AggregateByKey(aggregates:
typing.Union[typing.List[storey.dtypes.FieldAggregator],
typing.List[typing.Dict[str, object]]], table:
typing.Union[storey.table.Table, str], key:
typing.Optional[typing.Union[str,
typing.Callable[[storey.dtypes.Event], object]]] = None,
emit_policy: typing.Union[storey.dtypes.EmitPolicy,
typing.Dict[str, object]] = <storey.dtypes.EmitEveryEvent
object>, augmentation_fn:
typing.Optional[typing.Callable[[storey.dtypes.Event,
typing.Dict[str, object]], storey.dtypes.Event]] = None,
enrich_with: typing.Optional[typing.List[str]] = None,
aliases: typing.Optional[typing.Dict[str, str]] = None,
use_windows_from_schema: bool = False, **kwargs)

Aggregates the data into the table object provided for later persistence, and outputs an event enriched with the
requested aggregation features. Persistence is done via the NoSqlTarget step and based on the Cache object
persistence settings.

Parameters

• aggregates – List of aggregates to apply for each event. accepts either list of FieldAg-
gregators or a dictionary describing FieldAggregators.

• table – A Table object or name for persistence of aggregations. If a table name is pro-
vided, it will be looked up in the context object passed in kwargs.

• key – Key field to aggregate by, accepts either a string representing the key field or a key
extracting function. Defaults to the key in the event’s metadata. (Optional)

• emit_policy – Policy indicating when the data will be emitted. Defaults to EmitEv-
eryEvent

• augmentation_fn – Function that augments the features into the event’s body. Defaults
to updating a dict. (Optional)

• enrich_with – List of attributes names from the associated storage object to be fetched
and added to every event. (Optional)

• aliases – Dictionary specifying aliases for enriched or aggregate columns, of the format
{‘col_name’: ‘new_col_name’}. (Optional)

class storey.transformations.Assert(**kwargs)
Exposes an API for testing the flow between steps.

class storey.transformations.Batch(max_events: Optional[int] = None, flush_after_seconds: Optional[int]
= None, key: Optional[Union[str, Callable[[storey.dtypes.Event],
str]]] = None, **kwargs)

Batches events into lists of up to max_events events. Each emitted list contained max_events events, unless
flush_after_seconds seconds have passed since the first event in the batch was received, at which the batch is
emitted with potentially fewer than max_events event.

Parameters
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• max_events – Maximum number of events per emitted batch. Set to None to emit all
events in one batch on flow termination.

• flush_after_seconds – Maximum number of seconds to wait before a batch is emitted.

• key – The key by which events are grouped. By default (None), events are not grouped.
Other options may be: Set a ‘$key’ to group events by the Event.key property. set a ‘str’
key to group events by Event.body[str]. set a Callable[Any, Any] to group events by a a
custom key extractor.

class storey.transformations.Choice(choice_array, default=None, **kwargs)
Redirects each input element into at most one of multiple downstreams.

Parameters

• choice_array (tuple of (Flow, Function (Event=>boolean))) – a list of
(downstream, condition) tuples, where downstream is a step and condition is a function.
The first condition in the list to evaluate as true for an input element causes that element
to be redirected to that downstream step.

• default (Flow) – a default step for events that did not match any condition in
choice_array. If not set, elements that don’t match any condition will be discarded.

• name (string) – Name of this step, as it should appear in logs. Defaults to class name
(Choice).

• full_event (boolean) – Whether user functions should receive and/or return Event
objects (when True), or only the payload (when False). Defaults to False.

class storey.transformations.Extend(fn, long_running=None, **kwargs)
Adds fields to each incoming event.

Parameters

• fn (Function (Event=>Dict)) – Function to transform each event to a dictionary. The
fields in the returned dictionary are then added to the original event.

• long_running – Whether fn is a long-running function. Long-running functions are run
in an executor to avoid blocking other

concurrent processing. Default is False. :type long_running: boolean :param name: Name of this step, as it
should appear in logs. Defaults to class name (Extend). :type name: string :param full_event: Whether user
functions should receive and/or return Event objects (when True), or only the payload (when False).

Defaults to False.

class storey.transformations.Filter(fn, long_running=None, **kwargs)
Filters events based on a user-provided function.

Parameters

• fn (Function (Event=>boolean)) – Function to decide whether to keep each event.

• long_running – Whether fn is a long-running function. Long-running functions are run
in an executor to avoid blocking other

concurrent processing. Default is False. :type long_running: boolean :param name: Name of this step, as it
should appear in logs. Defaults to class name (Filter). :type name: string :param full_event: Whether user
functions should receive and/or return Event objects (when True), or only the payload (when False).

Defaults to False.
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class storey.transformations.FlatMap(fn, long_running=None, **kwargs)
Maps, or transforms, each incoming event into any number of events.

Parameters

• fn (Function (Event=>list of Event)) – Function to transform each event to a list
of events.

• long_running – Whether fn is a long-running function. Long-running functions are run
in an executor to avoid blocking other

concurrent processing. Default is False. :type long_running: boolean :param name: Name of this step, as it
should appear in logs. Defaults to class name (FlatMap). :type name: string :param full_event: Whether user
functions should receive and/or return Event objects (when True), or only the payload (when False).

Defaults to False.

storey.transformations.Flatten(**kwargs)
Flatten is equivalent to FlatMap(lambda x: x).

class storey.transformations.ForEach(fn, long_running=None, **kwargs)
Applies given function on each event in the stream, passes original event downstream.

class storey.transformations.JoinWithTable(table: Union[storey.table.Table, str], key_extractor:
Union[str, Callable[[storey.dtypes.Event], str]], attributes:
Optional[List[str]] = None, inner_join: bool = False,
join_function: Optional[Callable[[Any, Dict[str, object]],
Any]] = None, **kwargs)

Joins each event with data from the given table.

Parameters

• table – A Table object or name to join with. If a table name is provided, it will be looked
up in the context.

• key_extractor – Key’s column name or a function for extracting the key, for table access
from an event.

• attributes – A comma-separated list of attributes to be queried for. Defaults to all
attributes.

• inner_join – Whether to drop events when the table does not have a matching entry
(join_function won’t be called in such a case). Defaults to False.

• join_function – Joins the original event with relevant data received from the storage.
Event is dropped when this function returns None. Defaults to assume the event’s body is
a dict-like object and updating it.

• name – Name of this step, as it should appear in logs. Defaults to class name (JoinWith-
Table).

• full_event – Whether user functions should receive and/or return Event objects (when
True), or only the payload (when False). Defaults to False.

• context – Context object that holds global configurations and secrets.
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class storey.transformations.Map(fn, long_running=None, **kwargs)
Maps, or transforms, incoming events using a user-provided function.

Parameters

• fn (Function (Event=>Event)) – Function to apply to each event

• long_running – Whether fn is a long-running function. Long-running functions are run
in an executor to avoid blocking other

concurrent processing. Default is False. :type long_running: boolean :param name: Name of this step, as it
should appear in logs. Defaults to class name (Map). :type name: string :param full_event: Whether user
functions should receive and/or return Event objects (when True), or only the payload (when False).

Defaults to False.

class storey.transformations.MapClass(long_running=None, **kwargs)
Similar to Map, but instead of a function argument, this class should be extended and its do() method overridden.

class storey.transformations.MapWithState(initial_state, fn, group_by_key=False, **kwargs)
Maps, or transforms, incoming events using a stateful user-provided function, and an initial state, which may be
a database table.

Parameters

• initial_state (dictionary or Table if group_by_key is True. Any
object otherwise.) – Initial state for the computation. If group_by_key is True, this
must be a dictionary or a Table object.

• fn (Function ((Event, state)=>(Event, state))) – A function to run on each
event and the current state. Must yield an event and an updated state.

• group_by_key (boolean) – Whether the state is computed by key. Optional. Default to
False.

• full_event (boolean) – Whether fn will receive and return an Event object or only the
body (payload). Optional. Defaults to False (body only).

class storey.transformations.Partition(predicate: Callable[[Any], bool], **kwargs)
Partitions events by calling a predicate function on each event. Each processed event results in a Partitioned
namedtuple of (left=Optional[Event], right=Optional[Event]).

For a given event, if the predicate function results in True, the event is assigned to left. Otherwise, the event is
assigned to right.

Parameters predicate – A predicate function that results in a boolean.

class storey.transformations.ReifyMetadata(mapping: Iterable[str], **kwargs)
Inserts event metadata into the event body. :param mapping: Dictionary from event attribute name to entry key
in the event body (which must be a dictionary). Alternatively, an iterable of names may be provided, and these
will be used as both attribute name and entry key. :param name: Name of this step, as it should appear in logs.
Defaults to class name (ReifyMetadata). :type name: string

class storey.transformations.SampleWindow(window_size: int, emit_period:
storey.steps.sample.EmitPeriod = EmitPeriod.FIRST,
emit_before_termination: bool = False, key:
Optional[Union[str, Callable[[storey.dtypes.Event], str]]] =
None, **kwargs)

41.15. storey.transformations - Graph transformations 513



mlrun, Release UNKNOWN

Emits a single event in a window of window_size events, in accordance with emit_period and
emit_before_termination.

Parameters

• window_size – The size of the window we want to sample a single event from.

• emit_period – What event should this step emit for each window_size (default: Emit-
Period.First).

Available options: 1.1) EmitPeriod.FIRST - will emit the first event in a window window_size events. 1.2)
EmitPeriod.LAST - will emit the last event in a window of window_size events.

Parameters emit_before_termination – On termination signal, should the step emit the last
event it seen (default: False).

Available options: 2.1) True - The last event seen will be emitted downstream. 2.2) False - The last event seen
will NOT be emitted downstream.

Parameters key – The key by which events are sampled. By default (None), events are not sampled
by key. Other options may be: Set to ‘$key’ to sample events by the Event.key property. set to
‘str’ key to sample events by Event.body[str]. set a Callable[[Event], str] to sample events by
a custom key extractor.

class storey.transformations.SendToHttp(request_builder, join_from_response, **kwargs)
Joins each event with data from any HTTP source. Used for event augmentation.

Parameters

• request_builder (Function (Event=>HttpRequest)) – Creates an HTTP request
from the event. This request is then sent to its destination.

• join_from_response (Function ((Event, HttpResponse)=>Event)) – Joins the
original event with the HTTP response into a new event.

• name (string) – Name of this step, as it should appear in logs. Defaults to class name
(SendToHttp).

• full_event (boolean) – Whether user functions should receive and/or return Event
objects (when True), or only the payload (when False). Defaults to False.

class storey.transformations.ToDataFrame(index: Optional[str] = None, columns: Optional[List[str]] =
None, **kwargs)

Create pandas data frame from events. Can appear in the middle of the flow, as opposed to ReduceToDataFrame

Parameters

• index – Name of the column to be used as index. Optional. If not set, DataFrame will be
range indexed.

• columns – List of column names to be passed as-is to the DataFrame constructor. Op-
tional.

for additional params, see documentation of storey.flow.Flow

See also the index of all functions and classes.
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FORTYTWO

COMMAND-LINE INTERFACE (TECH PREVIEW)

• CLI commands

• Building and running a function from a Git Repository

• Using a sources archive

42.1 CLI commands

Use the following commands of the MLRun command-line interface (CLI) — mlrun — to build and run MLRun
functions:

• build

• clean

• config

• get

• logs

• project

• run

• version

• watch

• watch-stream

Each command supports many flags, some of which are listed in their relevant sections. To view all the flags of a
command, run mlrun <command name> --help.
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42.1.1 build

Use the build CLI command to build all the function dependencies from the function specification into a function
container (Docker image).

Usage: mlrun build [OPTIONS] FUNC_URL

Example: mlrun build myfunc.yaml

Flag Description
name TEXT Function name
project TEXT Project name
tag TEXT Function tag
-i, image TEXT Target image path
-s, source TEXT Path/URL of the function source code. A PY file, or if `-a
-b, base-image TEXT Base Docker image

-c, command TEXT Build commands; for example, ‘-c pip install pandas’
secret-name TEXT Name of a container-registry secret
-a, archive TEXT Path/URL of a target function-sources archive directory: as part of the build, the

function sources (see `-s
silent Do not show build logs
with-mlrun Add the MLRun package (“mlrun”)
db TEXT Save the run results to path or DB url
-r, runtime TEXT Function spec dict, for pipeline usage
kfp Running inside Kubeflow Piplines, do not use
skip Skip if already deployed

Note: For information about using the -a|--archive option to create a function-sources archive, see
Using a Sources Archive later in this tutorial.

42.1.2 clean

Use the clean CLI command to clean runtime resources. When run without any flags, it cleans the resources for all
runs of all runtimes.

Usage: mlrun clean [OPTIONS] [KIND] [id]

Examples:

• Clean resources for all runs of all runtimes: mlrun clean

• Clean resources for all runs of a specific kind (e.g. job): mlrun clean job

• Clean resources for specific job (by uid): mlrun clean mpijob 15d04c19c2194c0a8efb26ea3017254b

Flag Description

kind Clean resources for all runs of a specific kind (e.g. job).

id Delete the resources of the mlrun object twith this identifier. For most function runtimes, runtime resources
are per Run, and the identifier is the Run’s UID. For DASK runtime, the runtime resources are per Function,
and the identifier is the Function’s name.
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Options Description
api URL of the mlrun-api service.
-ls, label-selector Delete only runtime resources matching the label selector.

-f, force Delete the runtime resource even if they’re not in terminal state or if the grace period didn’t
pass.

-gp, grace-period Grace period, in seconds, given to the runtime resource before they are actually removed,
counted from the moment they moved to the terminal state.

42.1.3 config

Use the config CLI command to show the mlrun client environment configuration, such as location of artifacts and
api.

Example: mlrun config

42.1.4 get

Use the get CLI command to list one or more objects per kind/class.

Usage: get pods | runs | artifacts | func [name]

Examples:

• mlrun get runs --project getting-started-admin

• mlrun get pods --project getting-started-admin

• mlrun get artifacts --project getting-started-admin

• mlrun get func prep-data --project getting-started-admin

Flag Description
name Name of object to return
-s, selector Label selector
-n, namespace Kubernetes namespace
uid Object ID
project Project name to return
-t, tag Artifact/function tag of object to return
db db path/url of object to return

42.1. CLI commands 517



mlrun, Release UNKNOWN

42.1.5 logs

Use the logs CLI command to get or watch task logs.

Usage: logs [OPTIONS] uid

Example: mlrun logs ba409c0cb4904d60aa8f8d1c05b40a75 --project getting-started-admin

Flag Description
-p,
project
TEXT

Project name

offset
INTE-
GER

Retrieve partial log, get up to size bytes starting at the offset from beginning of log

db
TEXT

API service url

-w,
watch

Retrieve logs of a running process, and watch the progress of the execution until it completes. Prints out
the logs and continues to periodically poll for, and print, new logs as long as the state of the runtime that
generates this log is either pending or running.

42.1.6 project

Use the project CLI command to load and/or run a project.

Usage: mlrun project [OPTIONS] [CONTEXT]

Example: mlrun project -r workflow.py .

Flag Description
-n, name TEXT Project name
-u, url TEXT Remote git or archive url of the project
-r, run TEXT Run workflow name of .py file
-a, arguments TEXT Kubeflow pipeline arguments name and value tuples (with -r flag), e.g. -a x=6
-p, artifact_path TEXT Target path/url for workflow artifacts. The string ‘’ is replaced by workflow id
-x, param TEXT mlrun project parameter name and value tuples, e.g. -p x=37 -p y=‘text’
-s, secrets TEXT Secrets file= or env=ENV_KEY1,. . .
namespace TEXT k8s namespace
db TEXT API service url
init_git For new projects init git the context dir
-c, clone Force override/clone into the context dir
sync Sync functions into db
-w, watch Wait for pipeline completion (with -r flag)
-d, dirty Allow run with uncommitted git changes
git_repo TEXT git repo (org/repo) for git comments
git_issue INTEGER git issue number for git comments
handler TEXT Workflow function handler name
engine TEXT Workflow engine (kfp/local)
local Try to run workflow functions locally
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42.1.7 run

Use the run CLI command to execute a task and inject parameters by using a local or remote function.

Usage: mlrun [OPTIONS] URL [ARGS]. . .

Examples:

• mlrun run -f db://getting-started-admin/prep-data --project getting-started-admin

• mlrun run -f myfunc.yaml -w -p p1=3

Flag Description
-p, param TEXT Parameter name and value tuples; for example, -p x=37 -p y='text'
-i, inputs TEXT Input artifact; for example, -i infile.txt=s3://mybucket/infile.txt
in-path TEXT Base directory path/URL for storing input artifacts
out-path TEXT Base directory path/URL for storing output artifacts
-s, secrets TEXT Secrets, either as file=<filename> or env=<ENVAR>,...; for example, -s

file=secrets.txt
name TEXT Run name
project TEXT Project name or ID
-f, func-url
TEXT

Path/URL of a YAML function-configuration file, or db:///[:tag] for a DB function object

task TEXT Path/URL of a YAML task-configuration file
handler TEXT Invoke the function handler inside the code file

42.1.8 version

Use the version CLI command to get the mlrun server version.

42.1.9 The watch Command

Use the watch CLI command to read the current or previous task (pod) logs.

Usage: mlrun watch [OPTIONS] POD

Example: mlrun watch prep-data-6rf7b

Flag Description
-n, namespace kubernetes namespace
-t, timeout Timeout in seconds
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42.1.10 watch-stream

Use the watch-stream CLI command to watch a v3io stream and print data at a recurring interval.

Usage: mlrun watch-stream [OPTIONS] URL

Examples:

• mlrun watch-stream v3io:///users/my-test-stream

• mlrun watch-stream v3io:///users/my-test-stream -s 1

• mlrun watch-stream v3io:///users/my-test-stream -s 1 -s 2

• mlrun watch-stream v3io:///users/my-test-stream -s 1 -s 2 --seek EARLIEST

Flag Description
-s, shard-ids Shard id to listen on (can be multiple).
–seek TEXT Where to start/seek (EARLIEST or LATEST)
-i, interval Interval in seconds. Default = 3
-j, is-json Indicates that the payload is json (will be deserialized).

42.2 Building and running a function from a Git repository

To build and run a function from a Git repository, start out by adding a YAML function-configuration file in your local
environment. This file should describe the function and define its specification. For example, create a myfunc.yaml
file with the following content in your working directory:

kind: job
metadata:
name: remote-demo1
project: ''

spec:
command: 'examples/training.py'
args: []
image: .mlrun/func-default-remote-demo-ps-latest
image_pull_policy: Always
build:
base_image: mlrun/mlrun:1.1.1
source: git://github.com/mlrun/mlrun

Then, run the following CLI command and pass the path to your local function-configuration file as an argument to
build the function’s container image according to the configured requirements. For example, the following command
builds the function using the myfunc.yaml file from the current directory:

mlrun build myfunc.yaml

When the build completes, you can use the run CLI command to run the function. Set the -f option to the path to the
local function-configuration file, and pass the relevant parameters. For example:

mlrun run -f myfunc.yaml -w -p p1=3

You can also try the following function-configuration example, which is based on the MLRun CI demo:
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kind: job
metadata:
name: remote-git-test
project: default
tag: latest

spec:
command: 'myfunc.py'
args: []
image_pull_policy: Always
build:
commands: []
base_image: mlrun/mlrun:1.1.1
source: git://github.com/mlrun/ci-demo.git

42.3 Using a sources archive

The -a|--archive option of the CLI build command enables you to define a remote object path for storing TAR
archive files with all the required code dependencies. The remote location can be, for example, in an AWS S3 bucket or
in a data container in an Iguazio MLOps Platform (“platform”) cluster. Alternatively, you can also set the archive path
by using the MLRUN_DEFAULT_ARCHIVE environment variable. When an archive path is provided, the remote builder
archives the configured function sources (see the -s|-source build option) into a TAR archive file, and then extracts
(untars) all of the archive files (i.e., the function sources) into the configured archive location.

To use the archive option, first create a local function-configuration file. For example, you can create a function.yaml
file in your working directory with the following content; the specification describes the environment to use, defines
a Python base image, adds several packages, and defines examples/training.py as the application to execute on run
commands:

kind: job
metadata:
name: remote-demo4
project: ''

spec:
command: 'examples/training.py'
args: []
image_pull_policy: Always
build:
commands: []
base_image: mlrun/mlrun:1.1.1

Next, run the following MLRun CLI command to build the function; replace the <...> placeholders to match your
configuration:

mlrun build <function-configuration file path> -a <archive path/URL> [-s <function-
→˓sources path/URL>]

For example, the following command uses the function.yaml configuration file (.), relies on the default function-
sources path (./), and sets the target archive path to v3io:///users/$V3IO_USERNAME/tars. So, for a user named
“admin”, for example, the function sources from the local working directory will be archived and then extracted into an
admin/tars directory in the “users” data container of the configured platform cluster (which is accessed via the v3io
data mount):

42.3. Using a sources archive 521



mlrun, Release UNKNOWN

mlrun build . -a v3io:///users/$V3IO_USERNAME/tars

Note:

• . is a shorthand for a function.yaml configuration file in the local working directory.

• The -a|--archive option is used to instruct MLRun to create an archive file from the function-
code sources at the location specified by the -s|--sources option; the default sources location is
the current directory (./).

After the function build completes, you can run the function with some parameters. For example:

mlrun run -f . -w -p p1=3
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43.1 MLRun Terms

MLRun
Terms

Description

Feature-
Set

A group of features that are ingested together and stored in logical group. See Feature Sets.

Fea-
tureVec-
tor

A combination of multiple Features originating from different FeatureSets. See Creating and using
feature vectors.

HTTPRunDBAPI for wrapper to the internal DB in MLRun. See mlrun.db.httpdb.HTTPRunDB.
hub Used in code to reference the MLRun functions Marketplace.
MLRun
Func-
tion

An abstraction over the code, extra packages, runtime configuration and desired resources which allow
execution in a local environment and on various serverless engines on top of K8s. See MLRun serverless
functions and Creating and using functions.

MLRun
Market-
place

A collection of pre-built MLRun functions avilable for usage. See MLRun functions Marketplace.

MLRun
project

A logical container for all the work on a particular activity/application that include functions, workflow,
artifacts, secrets, and more, and can be assigned to a specific group of users. See Projects.

mpijob One of the MLRun batch runtimes that runs distributed jobs and Horovod over the MPI job operator,
used mainly for deep learning jobs. See MLRun MPIJob and Horovod Runtime.

Nuclio
function

Subtype of MLRun function that uses the Nuclio runtime for any generic real-time function. See Nuclio
real-time functions and Nuclio documentation.

Serving
function

Subtype of MLRun function that uses the Nuclio runtime specifically for serving ML models or real-time
pipelines. See Real-time serving pipelines (graphs) and Model serving pipelines.

storey Asynchronous streaming library for real time event processing and feature extraction. Used in Iguazio’s
feature store and real-time pipelines. See storey.transformations - Graph transformations.
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43.2 Iguazio (V3IO) Terms

Name Description
Consumer group Set of consumers that cooperate to consume data from some topics.
Key Value (KV)
store

Type of storage where data is stored by a specific key, allows for real-time lookups.

TSDB Time series database: part of V3IO.
V3IO Iguazio real-time data layer, supports several formats including KV, Block, File, Streams,

and more.
V3IO shard Uniquely identified data sets within a V3IO stream. Similar to a Kafka partition.
V3IO stream Streaming mechanism part of Iguazio’s V3IO data layer. Similar to a Kafka stream.

43.3 Standard ML Terms

Name Description
Artifact A versioned output of a data processing or model training jobs, can be used as input for other jobs

or pipelines in the project. There are various types of artifacts (file, model, dataset, chart, etc.) that
incorporate useful metadata. See MLRun Artifacts and models.

DAG Directed acyclic graph, used to describe workflows/pipelines.
Feature
engi-
neering

Apply domain knowledge and statistical techniques to raw data to extract more information out of data
and improve performance of machine. learning models

EDA Exploratory data analysis. Used by data scientists to understand dataset via cleaning, visualization, and
statistical tests.

ML
pipeline

Pipeline of operations for machine learning. It can include loading data, feature engineering, feature
selection, model training, hyperparameter tuning, model validation, and model deployment.

Feature Data field/vector definition and metadata (name, type, stats, etc.). A dataset is a collection of features.
MLOps Set of practices that reliably and efficiently deploys and maintains machine learning models in production.

Combination of Machine Learning and DevOps.
Dataframe Tabular representation of data, often using tools such as Pandas, Spark, or Dask.
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43.4 ML Libraries / Tools

Name Description
Dask Flexible library for parallel computing in Python. Often used for data engineering, data science, and

machine learning.
Keras An open-source software library that provides a Python interface for artificial neural networks. Keras

acts as an interface for the TensorFlow library.
Kube-
Flow
pipeline

Platform for building and deploying portable, scalable machine learning (ML) workflows based on
Docker containers.

PyTorch An open source machine learning framework based on the Torch library, used for applications such as
computer vision and natural language. processing

Sklearn Open source machine learning Python library. Used for modelling, pipelines, data transformations,
feature engineering, and more.

Spark Open source parallel processing framework for running large-scale data analytics applications across
clustered computers. Often used for data engineering, data science, and machine learning.

Tensor-
Flow

A Google developed open-source software library for machine learning and deep learning.

Tensor-
Board

TensorFlow’s visualization toolkit, used for tracking metrics like loss and accuracy, visualizing the
model graph, viewing histograms of weights, biases, or other tensors as they change over time, etc.

XGBoost Optimized distributed gradient boosting library designed to be highly efficient, flexible and portable.
Implements machine learning algorithms under the Gradient Boosting framework.

Back to top
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A
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add_aggregation() (mlrun.feature_store.FeatureSet
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424
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AggregateByKey (class in storey.transformations), 510
all() (mlrun.run.RunStatuses static method), 474
annotations (mlrun.execution.MLClientCtx property),

415
api_call() (mlrun.db.httpdb.HTTPRunDB method),

395
apply() (mlrun.feature_store.RunConfig method), 430
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ArtifactType (class in mlrun), 378
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as_df() (mlrun.datastore.CSVTarget method), 388
as_df() (mlrun.datastore.DataItem method), 389
as_df() (mlrun.datastore.ParquetTarget method), 393
as_df() (mlrun.datastore.StreamTarget method), 394
as_step() (mlrun.runtimes.BaseRuntime method), 484
Assert (class in storey.transformations), 510
async_object (mlrun.serving.QueueStep property), 499
async_object (mlrun.serving.TaskStep property), 501
auto_mount() (in module mlrun.platforms), 447
AutoMLRun (class in ml-

run.frameworks.auto_mlrun.auto_mlrun),
375

B
BaseRuntime (class in mlrun.runtimes), 484
Batch (class in storey.transformations), 510
BatchHttpRequests (class in mlrun.serving.remote),

505
BigQuerySource (class in mlrun.datastore), 386
build_config() (mlrun.runtimes.KubejobRuntime

method), 488
build_function() (in module mlrun.projects), 465
build_function() (mlrun.projects.MlrunProject

method), 450
builder_status() (mlrun.runtimes.KubejobRuntime

method), 488

C
Choice (class in storey.transformations), 511
clear_children() (mlrun.serving.RouterStep method),

500
clear_context() (mlrun.projects.MlrunProject

method), 451
clear_object() (mlrun.serving.TaskStep method), 501
client (mlrun.runtimes.DaskCluster property), 487
close() (mlrun.feature_store.OnlineVectorService

method), 428
close() (mlrun.runtimes.DaskCluster method), 487
cluster() (mlrun.runtimes.DaskCluster method), 487
code_to_function() (in module mlrun), 379
code_to_function() (in module mlrun.run), 474
commit() (mlrun.execution.MLClientCtx method), 416
Config (class in mlrun.config), 384
connect() (mlrun.db.httpdb.HTTPRunDB method), 395
context (mlrun.projects.MlrunProject property), 451
ContextHandler (class in mlrun.run), 470
copy() (mlrun.feature_store.RunConfig method), 430
create_feature_set() (ml-

run.db.httpdb.HTTPRunDB method), 395
create_feature_vector() (ml-

run.db.httpdb.HTTPRunDB method), 396
create_graph_server() (in module mlrun.serving),

505

create_marketplace_source() (ml-
run.db.httpdb.HTTPRunDB method), 396

create_or_patch_model_endpoint() (ml-
run.db.httpdb.HTTPRunDB method), 397

create_project() (mlrun.db.httpdb.HTTPRunDB
method), 397

create_project_secrets() (ml-
run.db.httpdb.HTTPRunDB method), 397

create_remote() (mlrun.projects.MlrunProject
method), 451

create_schedule() (mlrun.db.httpdb.HTTPRunDB
method), 398

create_user_secrets() (ml-
run.db.httpdb.HTTPRunDB method), 398

create_vault_secrets() (ml-
run.projects.MlrunProject method), 451

CSVSource (class in mlrun.datastore), 387
CSVTarget (class in mlrun.datastore), 388
CurrentOpenWindow (ml-

run.feature_store.FixedWindowType attribute),
428

D
dask_kfp_image (mlrun.config.Config property), 384
DaskCluster (class in mlrun.runtimes), 487
DataItem (class in mlrun.datastore), 388
DATASET (mlrun.run.ArtifactType attribute), 470
DataSource (class in mlrun.model), 442
DataTarget (class in mlrun.model), 442
DataTargetBase (class in mlrun.model), 442
DateExtractor (class in mlrun.feature_store.steps), 436
dbpath (mlrun.config.Config property), 384
decode_base64_config_and_load_to_object()

(mlrun.config.Config static method), 384
DEFAULT (mlrun.run.ArtifactType attribute), 470
default_image (mlrun.runtimes.RemoteSparkRuntime

attribute), 493
default_shape (mlrun.serving.QueueStep attribute),

499
default_shape (mlrun.serving.RouterStep attribute),

500
del_artifact() (mlrun.db.httpdb.HTTPRunDB

method), 398
del_artifacts() (mlrun.db.httpdb.HTTPRunDB

method), 398
del_run() (mlrun.db.httpdb.HTTPRunDB method), 399
del_runs() (mlrun.db.httpdb.HTTPRunDB method),

399
delete() (mlrun.datastore.DataItem method), 389
delete_feature_set() (in module ml-

run.feature_store), 431
delete_feature_set() (ml-

run.db.httpdb.HTTPRunDB method), 399
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delete_feature_vector() (in module ml-
run.feature_store), 431

delete_feature_vector() (ml-
run.db.httpdb.HTTPRunDB method), 399

delete_function() (mlrun.db.httpdb.HTTPRunDB
method), 399

delete_marketplace_source() (ml-
run.db.httpdb.HTTPRunDB method), 399

delete_model_endpoint_record() (ml-
run.db.httpdb.HTTPRunDB method), 399

delete_project() (mlrun.db.httpdb.HTTPRunDB
method), 400

delete_project_secrets() (ml-
run.db.httpdb.HTTPRunDB method), 400

delete_runtime() (mlrun.db.httpdb.HTTPRunDB
method), 400

delete_runtime_object() (ml-
run.db.httpdb.HTTPRunDB method), 400

delete_runtime_resources() (ml-
run.db.httpdb.HTTPRunDB method), 400

delete_runtimes() (mlrun.db.httpdb.HTTPRunDB
method), 401

delete_schedule() (mlrun.db.httpdb.HTTPRunDB
method), 401

deploy() (mlrun.runtimes.DaskCluster method), 487
deploy() (mlrun.runtimes.KubejobRuntime method),

488
deploy() (mlrun.runtimes.RemoteRuntime method), 490
deploy() (mlrun.runtimes.RemoteSparkRuntime

method), 493
deploy() (mlrun.runtimes.ServingRuntime method), 495
deploy_default_image() (ml-

run.runtimes.RemoteSparkRuntime class
method), 493

deploy_function() (in module mlrun.projects), 465
deploy_function() (mlrun.projects.MlrunProject

method), 451
deploy_ingestion_service() (in module ml-

run.feature_store), 431
deploy_step() (mlrun.runtimes.KubejobRuntime

method), 489
deploy_step() (mlrun.runtimes.RemoteRuntime

method), 490
description (mlrun.projects.MlrunProject property),

451
DIRECTORY (mlrun.run.ArtifactType attribute), 470
do_event() (mlrun.serving.V2ModelServer method),

502
do_event() (mlrun.serving.VotingEnsemble method),

505
doc() (mlrun.runtimes.BaseRuntime method), 485
download() (mlrun.datastore.DataItem method), 389
download_object() (in module mlrun.run), 476
dump_yaml() (mlrun.config.Config method), 384

E
end_time (mlrun.datastore.ParquetSource property),

391
Entity (class in mlrun.feature_store), 422
error (mlrun.run.RunStatuses attribute), 474
explain() (mlrun.serving.V2ModelServer method), 502
export() (mlrun.projects.MlrunProject method), 451
export() (mlrun.runtimes.BaseRuntime method), 485
Extend (class in storey.transformations), 511
extract_results_from_response() (ml-

run.serving.VotingEnsemble method), 505

F
failed (mlrun.run.RunStatuses attribute), 474
Feature (class in mlrun.feature_store), 423
FeatureSet (class in mlrun.feature_store), 423
FeatureSetProducer (class in mlrun.model), 443
FeaturesetValidator (class in ml-

run.feature_store.steps), 438
FeatureVector (class in mlrun.feature_store), 427
FILE (mlrun.run.ArtifactType attribute), 470
fill_credentials() (mlrun.runtimes.BaseRuntime

method), 485
Filter (class in storey.transformations), 511
FixedWindowType (class in mlrun.feature_store), 428
FlatMap (class in storey.transformations), 512
Flatten() (in module storey.transformations), 512
ForEach (class in storey.transformations), 512
framework_to_apply_mlrun() (in module ml-

run.frameworks.auto_mlrun.auto_mlrun),
377

framework_to_model_handler() (in module ml-
run.frameworks.auto_mlrun.auto_mlrun),
378

from_dict() (mlrun.config.Config class method), 384
from_dict() (mlrun.execution.MLClientCtx class

method), 416
from_dict() (mlrun.model.DataTargetBase class

method), 443
from_image() (mlrun.runtimes.RemoteRuntime

method), 491
full_image_path() (mlrun.runtimes.BaseRuntime

method), 485
fullname (mlrun.feature_store.FeatureSet property), 425
func() (mlrun.projects.MlrunProject method), 452
function (mlrun.feature_store.RunConfig property), 430
function_to_module() (in module mlrun.run), 476
functions (mlrun.projects.MlrunProject property), 452
functions (mlrun.projects.ProjectSpec property), 464

G
get() (mlrun.datastore.DataItem method), 389
get() (mlrun.feature_store.OnlineVectorService

method), 428
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get_api_path_prefix() (ml-
run.db.httpdb.HTTPRunDB static method),
401

get_artifact() (mlrun.projects.MlrunProject
method), 452

get_artifact_uri() (mlrun.projects.MlrunProject
method), 452

get_background_task() (ml-
run.db.httpdb.HTTPRunDB method), 401

get_base_api_url() (mlrun.db.httpdb.HTTPRunDB
method), 401

get_build_args() (mlrun.config.Config static method),
384

get_builder_status() (ml-
run.db.httpdb.HTTPRunDB method), 401

get_cached_artifact() (ml-
run.execution.MLClientCtx method), 416

get_child_context() (mlrun.execution.MLClientCtx
method), 416

get_children() (mlrun.serving.RouterStep method),
500

get_code_path() (mlrun.projects.ProjectSpec
method), 464

get_dask_options() (mlrun.datastore.ParquetTarget
method), 393

get_dataitem() (in module mlrun.run), 477
get_dataitem() (mlrun.execution.MLClientCtx

method), 416
get_default_function_node_selector() (ml-

run.config.Config method), 385
get_default_function_pod_requirement_resources()

(mlrun.config.Config static method), 385
get_default_function_pod_resources() (ml-

run.config.Config method), 385
get_default_function_security_context()

(mlrun.config.Config method), 385
get_feature_aliases() (ml-

run.feature_store.FeatureVector method),
427

get_feature_set() (in module mlrun.feature_store),
432

get_feature_set() (mlrun.db.httpdb.HTTPRunDB
method), 401

get_feature_vector() (in module ml-
run.feature_store), 432

get_feature_vector() (ml-
run.db.httpdb.HTTPRunDB method), 401

get_framework_by_class_name() (in module ml-
run.frameworks.auto_mlrun.auto_mlrun), 378

get_framework_by_instance() (in module ml-
run.frameworks.auto_mlrun.auto_mlrun),
378

get_function() (mlrun.db.httpdb.HTTPRunDB
method), 401

get_function() (mlrun.projects.MlrunProject
method), 452

get_function_objects() (ml-
run.projects.MlrunProject method), 453

get_hub_url() (mlrun.config.Config static method),
385

get_input() (mlrun.execution.MLClientCtx method),
416

get_log() (mlrun.db.httpdb.HTTPRunDB method), 402
get_marketplace_catalog() (ml-

run.db.httpdb.HTTPRunDB method), 402
get_marketplace_item() (ml-

run.db.httpdb.HTTPRunDB method), 402
get_marketplace_source() (ml-

run.db.httpdb.HTTPRunDB method), 403
get_meta() (mlrun.execution.MLClientCtx method),

417
get_model() (in module mlrun.artifacts), 383
get_model() (mlrun.serving.V2ModelServer method),

502
get_model_endpoint() (ml-

run.db.httpdb.HTTPRunDB method), 403
get_object() (in module mlrun.run), 477
get_offline_features() (in module ml-

run.feature_store), 432
get_online_feature_service() (in module ml-

run.feature_store), 433
get_or_create_ctx() (in module mlrun.run), 477
get_or_create_project() (in module ml-

run.projects), 466
get_param() (mlrun.execution.MLClientCtx method),

417
get_param() (mlrun.projects.MlrunProject method),

453
get_param() (mlrun.serving.GraphContext method),

498
get_param() (mlrun.serving.V2ModelServer method),

502
get_parsed_igz_version() (mlrun.config.Config

static method), 385
get_pipeline() (in module mlrun.run), 478
get_pipeline() (mlrun.db.httpdb.HTTPRunDB

method), 403
get_preemptible_node_selector() (ml-

run.config.Config method), 385
get_preemptible_tolerations() (ml-

run.config.Config method), 385
get_project() (mlrun.db.httpdb.HTTPRunDB

method), 403
get_project_background_task() (ml-

run.db.httpdb.HTTPRunDB method), 403
get_project_param() (mlrun.execution.MLClientCtx

method), 417
get_remote_endpoint() (ml-
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run.serving.GraphContext method), 498
get_run_status() (mlrun.projects.MlrunProject

method), 453
get_runtime() (mlrun.db.httpdb.HTTPRunDB

method), 403
get_schedule() (mlrun.db.httpdb.HTTPRunDB

method), 403
get_secret() (mlrun.execution.MLClientCtx method),

417
get_secret() (mlrun.projects.MlrunProject method),

453
get_secret() (mlrun.serving.GraphContext method),

498
get_security_context_enrichment_group_id()

(mlrun.config.Config static method), 385
get_spark_options() (mlrun.datastore.CSVSource

method), 387
get_spark_options() (mlrun.datastore.CSVTarget

method), 388
get_spark_options() (mlrun.datastore.ParquetSource

method), 392
get_spark_options() (mlrun.datastore.ParquetTarget

method), 393
get_stats_table() (mlrun.feature_store.FeatureSet

method), 425
get_stats_table() (ml-

run.feature_store.FeatureVector method),
427

get_status() (mlrun.runtimes.DaskCluster method),
487

get_storage_auto_mount_params() (ml-
run.config.Config static method), 385

get_store_resource() (in module mlrun.datastore),
394

get_store_resource() (mlrun.execution.MLClientCtx
method), 417

get_store_resource() (mlrun.projects.MlrunProject
method), 453

get_table_object() (mlrun.datastore.NoSqlTarget
method), 391

get_target_path() (mlrun.feature_store.FeatureSet
method), 425

get_target_path() (ml-
run.feature_store.FeatureVector method),
427

get_valid_function_priority_class_names()
(mlrun.config.Config static method), 385

get_vault_secrets() (mlrun.projects.MlrunProject
method), 453

get_version() (in module mlrun), 380
gpus() (mlrun.runtimes.DaskCluster method), 487
graph (mlrun.feature_store.FeatureSet property), 425
graph (mlrun.serving.GraphServer property), 498
GraphContext (class in mlrun.serving), 498

GraphServer (class in mlrun.serving), 498

H
handler() (in module mlrun), 380
handler() (in module mlrun.run), 478
HandlerRuntime (class in mlrun.runtimes), 488
has_valid_source() (mlrun.feature_store.FeatureSet

method), 426
HTTPRunDB (class in mlrun.db.httpdb), 394
HttpSource (class in mlrun.datastore), 390
HyperParamOptions (class in mlrun.model), 443

I
iguazio_api_url (mlrun.config.Config property), 385
import_artifact() (mlrun.projects.MlrunProject

method), 453
import_function() (in module mlrun), 382
import_function() (in module mlrun.run), 480
import_function_to_dict() (in module mlrun.run),

480
Imputer (class in mlrun.feature_store.steps), 439
in_path (mlrun.execution.MLClientCtx property), 417
ingest() (in module mlrun.feature_store), 434
init_object() (mlrun.serving.GraphServer method),

498
init_object() (mlrun.serving.QueueStep method), 499
init_object() (mlrun.serving.RouterStep method),

500
init_object() (mlrun.serving.TaskStep method), 501
init_states() (mlrun.serving.GraphServer method),

498
initialize() (mlrun.feature_store.OnlineVectorService

method), 429
initialized (mlrun.runtimes.DaskCluster property),

487
inputs (mlrun.execution.MLClientCtx property), 417
InputsParser (class in mlrun.run), 472
invoke() (mlrun.runtimes.RemoteRuntime method), 491
invoke_schedule() (mlrun.db.httpdb.HTTPRunDB

method), 403
is_api_running_on_k8s() (mlrun.config.Config

method), 385
is_context_available() (mlrun.run.ContextHandler

method), 470
is_deployed() (mlrun.runtimes.BaseRuntime method),

485
is_deployed() (mlrun.runtimes.DaskCluster method),

487
is_deployed() (mlrun.runtimes.KubejobRuntime

method), 489
is_deployed() (mlrun.runtimes.LocalRuntime

method), 489
is_deployed() (mlrun.runtimes.RemoteSparkRuntime

method), 493
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is_iterator() (mlrun.datastore.BigQuerySource
method), 387

is_iterator() (mlrun.datastore.CSVSource method),
387

is_offline (mlrun.datastore.CSVTarget attribute), 388
is_offline (mlrun.datastore.ParquetTarget attribute),

393
is_online (mlrun.datastore.StreamTarget attribute),

394
is_pip_ca_configured() (mlrun.config.Config static

method), 385
is_preemption_nodes_configured() (ml-

run.config.Config method), 385
is_running_on_iguazio() (mlrun.config.Config static

method), 385
is_single_file() (mlrun.datastore.CSVTarget

method), 388
is_single_file() (mlrun.datastore.ParquetTarget

method), 393
is_table (mlrun.datastore.StreamTarget attribute), 394
iteration (mlrun.execution.MLClientCtx property),

417

J
JoinWithTable (class in storey.transformations), 512

K
KafkaSource (class in mlrun.datastore), 390
key (mlrun.datastore.DataItem property), 389
kfp_image (mlrun.config.Config property), 385
kind (mlrun.datastore.BigQuerySource attribute), 387
kind (mlrun.datastore.CSVSource attribute), 387
kind (mlrun.datastore.CSVTarget attribute), 388
kind (mlrun.datastore.DataItem property), 389
kind (mlrun.datastore.HttpSource attribute), 390
kind (mlrun.datastore.KafkaSource attribute), 391
kind (mlrun.datastore.NoSqlTarget attribute), 391
kind (mlrun.datastore.ParquetSource attribute), 392
kind (mlrun.datastore.ParquetTarget attribute), 393
kind (mlrun.datastore.StreamSource attribute), 393
kind (mlrun.datastore.StreamTarget attribute), 394
kind (mlrun.db.httpdb.HTTPRunDB attribute), 404
kind (mlrun.execution.MLClientCtx attribute), 417
kind (mlrun.feature_store.FeatureSet attribute), 426
kind (mlrun.feature_store.FeatureVector attribute), 427
kind (mlrun.projects.MlrunProject attribute), 453
kind (mlrun.runtimes.BaseRuntime attribute), 485
kind (mlrun.runtimes.DaskCluster attribute), 487
kind (mlrun.runtimes.HandlerRuntime attribute), 488
kind (mlrun.runtimes.KubejobRuntime attribute), 489
kind (mlrun.runtimes.LocalRuntime attribute), 489
kind (mlrun.runtimes.RemoteRuntime attribute), 491
kind (mlrun.runtimes.RemoteSparkRuntime attribute),

494

kind (mlrun.runtimes.ServingRuntime attribute), 495
kind (mlrun.serving.GraphServer attribute), 498
kind (mlrun.serving.QueueStep attribute), 499
kind (mlrun.serving.RouterStep attribute), 500
kind (mlrun.serving.TaskStep attribute), 501
KubejobRuntime (class in mlrun.runtimes), 488
kubernetes (mlrun.api.schemas.secret.SecretProviderName

attribute), 415

L
labels (mlrun.execution.MLClientCtx property), 417
LastClosedWindow (ml-

run.feature_store.FixedWindowType attribute),
428

link_analysis() (mlrun.feature_store.FeatureSet
method), 426

link_analysis() (mlrun.feature_store.FeatureVector
method), 427

list_artifact_tags() (ml-
run.db.httpdb.HTTPRunDB method), 404

list_artifacts() (mlrun.db.httpdb.HTTPRunDB
method), 404

list_artifacts() (mlrun.projects.MlrunProject
method), 453

list_entities() (mlrun.db.httpdb.HTTPRunDB
method), 404

list_feature_sets() (mlrun.db.httpdb.HTTPRunDB
method), 404

list_feature_vectors() (ml-
run.db.httpdb.HTTPRunDB method), 405

list_features() (mlrun.db.httpdb.HTTPRunDB
method), 406

list_functions() (mlrun.db.httpdb.HTTPRunDB
method), 406

list_functions() (mlrun.projects.MlrunProject
method), 454

list_marketplace_sources() (ml-
run.db.httpdb.HTTPRunDB method), 406

list_model_endpoints() (ml-
run.db.httpdb.HTTPRunDB method), 406

list_models() (mlrun.projects.MlrunProject method),
454

list_pipelines() (in module mlrun.run), 480
list_pipelines() (mlrun.db.httpdb.HTTPRunDB

method), 407
list_project_secret_keys() (ml-

run.db.httpdb.HTTPRunDB method), 407
list_project_secrets() (ml-

run.db.httpdb.HTTPRunDB method), 408
list_projects() (mlrun.db.httpdb.HTTPRunDB

method), 408
list_runs() (mlrun.db.httpdb.HTTPRunDB method),

408
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list_runs() (mlrun.projects.MlrunProject method),
455

list_runtime_resources() (ml-
run.db.httpdb.HTTPRunDB method), 409

list_runtimes() (mlrun.db.httpdb.HTTPRunDB
method), 410

list_schedules() (mlrun.db.httpdb.HTTPRunDB
method), 410

listdir() (mlrun.datastore.DataItem method), 389
load() (mlrun.serving.V2ModelServer method), 502
load_func_code() (in module mlrun.run), 481
load_model() (mlrun.frameworks.auto_mlrun.auto_mlrun.AutoMLRun

static method), 376
load_project() (in module mlrun.projects), 466
local() (mlrun.datastore.DataItem method), 389
LocalRuntime (class in mlrun.runtimes), 489
log_artifact() (mlrun.execution.MLClientCtx

method), 417
log_artifact() (mlrun.projects.MlrunProject

method), 455
log_dataset() (mlrun.execution.MLClientCtx

method), 418
log_dataset() (mlrun.projects.MlrunProject method),

456
log_dataset() (mlrun.run.OutputsLogger static

method), 473
log_directory() (mlrun.run.OutputsLogger static

method), 473
log_file() (mlrun.run.OutputsLogger static method),

473
log_iteration_results() (ml-

run.execution.MLClientCtx method), 419
log_level (mlrun.execution.MLClientCtx property),

419
log_metric() (mlrun.execution.MLClientCtx method),

419
log_metrics() (mlrun.execution.MLClientCtx

method), 419
log_model() (mlrun.execution.MLClientCtx method),

419
log_model() (mlrun.projects.MlrunProject method),

457
log_object() (mlrun.run.OutputsLogger static

method), 473
log_outputs() (mlrun.run.ContextHandler method),
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post_init() (mlrun.serving.V2ModelServer method),

503
post_init() (mlrun.serving.VotingEnsemble method),

505
postprocess() (mlrun.serving.V2ModelServer

method), 503
pprint() (in module mlrun.platforms), 449
predict() (mlrun.serving.V2ModelServer method), 503
prepare_spark_df() (mlrun.datastore.CSVTarget

method), 388
preprocess() (mlrun.serving.V2ModelServer method),

503
preview() (in module mlrun.feature_store), 435
project (mlrun.execution.MLClientCtx property), 421
ProjectMetadata (class in mlrun.projects), 464
ProjectSpec (class in mlrun.projects), 464
ProjectStatus (class in mlrun.projects), 465
pull() (mlrun.projects.MlrunProject method), 458
purge_targets() (mlrun.feature_store.FeatureSet

method), 426
push() (mlrun.projects.MlrunProject method), 458
push_error() (mlrun.serving.GraphContext method),

498

536 Index



mlrun, Release UNKNOWN

put() (mlrun.datastore.DataItem method), 390

Q
QueueStep (class in mlrun.serving), 499

R
read_artifact() (mlrun.db.httpdb.HTTPRunDB

method), 411
read_env() (in module mlrun.config), 386
read_run() (mlrun.db.httpdb.HTTPRunDB method),

411
refresh() (mlrun.model.RunObject method), 444
register_artifacts() (mlrun.projects.MlrunProject

method), 458
ReifyMetadata (class in storey.transformations), 513
reload() (mlrun.config.Config static method), 385
reload() (mlrun.feature_store.FeatureSet method), 426
reload() (mlrun.feature_store.FeatureVector method),

428
reload() (mlrun.projects.MlrunProject method), 458
remote_builder() (mlrun.db.httpdb.HTTPRunDB

method), 411
remote_start() (mlrun.db.httpdb.HTTPRunDB

method), 412
remote_status() (mlrun.db.httpdb.HTTPRunDB

method), 412
RemoteRuntime (class in mlrun.runtimes), 490
RemoteSparkRuntime (class in mlrun.runtimes), 493
RemoteStep (class in mlrun.serving.remote), 508
remove_artifact() (mlrun.projects.ProjectSpec

method), 464
remove_function() (mlrun.projects.MlrunProject

method), 459
remove_function() (mlrun.projects.ProjectSpec

method), 464
remove_states() (mlrun.runtimes.ServingRuntime

method), 495
remove_workflow() (mlrun.projects.ProjectSpec

method), 465
resolve_chief_api_url() (mlrun.config.Config

method), 385
resolve_kfp_url() (mlrun.config.Config method), 385
resolve_runs_monitoring_missing_runtime_resources_debouncing_interval()

(mlrun.config.Config method), 385
resolve_ui_url() (mlrun.config.Config static method),

386
respond() (mlrun.serving.TaskStep method), 501
RESULT (mlrun.run.ArtifactType attribute), 470
results (mlrun.execution.MLClientCtx property), 421
RouterStep (class in mlrun.serving), 500
routes (mlrun.serving.RouterStep property), 500
run() (mlrun.projects.MlrunProject method), 459
run() (mlrun.runtimes.BaseRuntime method), 485
run() (mlrun.serving.GraphServer method), 498

run() (mlrun.serving.QueueStep method), 499
run() (mlrun.serving.TaskStep method), 501
run_function() (in module mlrun.projects), 468
run_function() (mlrun.projects.MlrunProject

method), 459
run_local() (in module mlrun.run), 482
run_pipeline() (in module mlrun.run), 483
RunConfig (class in mlrun.feature_store), 429
RunMetadata (class in mlrun.model), 443
running (mlrun.run.RunStatuses attribute), 474
RunObject (class in mlrun.model), 443
RunSpec (class in mlrun.model), 444
RunStatus (class in mlrun.model), 444
RunStatuses (class in mlrun.run), 474
RunTemplate (class in mlrun.model), 444

S
SampleWindow (class in storey.transformations), 513
save() (mlrun.feature_store.FeatureSet method), 426
save() (mlrun.feature_store.FeatureVector method), 428
save() (mlrun.projects.MlrunProject method), 460
save() (mlrun.runtimes.BaseRuntime method), 486
save_to_db() (mlrun.projects.MlrunProject method),

461
save_workflow() (mlrun.projects.MlrunProject

method), 461
SecretProviderName (class in ml-

run.api.schemas.secret), 415
SendToHttp (class in storey.transformations), 514
server (mlrun.serving.GraphContext property), 498
ServingRuntime (class in mlrun.runtimes), 494
set_annotation() (mlrun.execution.MLClientCtx

method), 421
set_artifact() (mlrun.projects.MlrunProject

method), 461
set_artifact() (mlrun.projects.ProjectSpec method),

465
set_config() (mlrun.runtimes.RemoteRuntime

method), 491
set_current_function() (ml-

run.serving.GraphServer method), 498
set_db_connection() (mlrun.runtimes.BaseRuntime

method), 486
set_env_variables() (in module mlrun.platforms),

449
set_environment() (in module mlrun), 382
set_error_stream() (mlrun.serving.GraphServer

method), 498
set_function() (mlrun.projects.MlrunProject

method), 461
set_function() (mlrun.projects.ProjectSpec method),

465
set_hostname() (mlrun.execution.MLClientCtx

method), 421

Index 537



mlrun, Release UNKNOWN
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