Quick start tutorial#

Open In Colab

Introduction to MLRun - Use serverless functions to train and deploy models

This notebook provides a quick overview of developing and deploying machine learning applications using the MLRun MLOps orchestration framework.

Tutorial steps:

Watch the video tutorial.

Install MLRun#

MLRun has a backend service that can run locally or over Kubernetes (preferred). See the instructions for installing it locally using Docker or over Kubernetes Cluster. Alternatively, you can use Iguazio’s managed MLRun service.

Before you start, make sure the MLRun client package is installed and configured properly:

This notebook uses sklearn. If it is not installed in your environment run !pip install scikit-learn~=1.0.

# Install MLRun and sklearn, run this only once (restart the notebook after the install !!!)
%pip install mlrun scikit-learn~=1.0

Restart the notebook kernel after the pip installation.

import mlrun

Configure the client environment#

MLRun client connects to the local or remote MLRun service/cluster using a REST API. To configure the service address, credentials, and default settings, you use the mlrun.set_environment() method, or environment variables, (see details in Set up your client environment.)

You can skip this step when using MLRun Jupyter notebooks or Iguazio’s managed notebooks.

Define MLRun project and ML functions#

MLRun Project is a container for all your work on a particular activity or application. Projects host functions, workflow, artifacts, secrets, and more. Projects have access control and can be accessed by one or more users. They are usually associated with a GIT and interact with CI/CD frameworks for automation. See the MLRun Projects documentation.

Create a new project

project = mlrun.get_or_create_project("quick-tutorial", "./", user_project=True)
> 2022-09-20 13:19:49,414 [info] loaded project quick-tutorial from MLRun DB

MLRun serverless functions specify the source code, base image, extra package requirements, runtime engine kind (batch job, real-time serving, spark, dask, etc.), and desired resources (cpu, gpu, mem, storage, …). The runtime engines (local, job, Nuclio, Spark, etc.) automatically transform the function code and spec into fully managed and elastic services that run over Kubernetes. Function source code can come from a single file (.py, .ipynb, etc.) or a full archive (git, zip, tar). MLRun can execute an entire file/notebook or specific function classes/handlers.

Note

The @mlrun.handler is a decorator that logs the returning values to MLRun as configured. This example uses the default settings so that it logs a dataset (pd.DataFrame) and a string value by getting the returned objects types. In addition to logging outputs, the decorator can parse incoming inputs to the required type. For more info, see the mlrun.handler documentation.

Function code

Run the following cell to generate the data prep file (or copy it manually):

%%writefile data-prep.py

import pandas as pd
from sklearn.datasets import load_breast_cancer

import mlrun


@mlrun.handler(outputs=["dataset", "label_column"])
def breast_cancer_generator():
    """
    A function which generates the breast cancer dataset
    """
    breast_cancer = load_breast_cancer()
    breast_cancer_dataset = pd.DataFrame(
        data=breast_cancer.data, columns=breast_cancer.feature_names
    )
    breast_cancer_labels = pd.DataFrame(data=breast_cancer.target, columns=["label"])
    breast_cancer_dataset = pd.concat(
        [breast_cancer_dataset, breast_cancer_labels], axis=1
    )

    return breast_cancer_dataset, "label"
Overwriting data-prep.py

Create a serverless function object from the code above, and register it in the project

data_gen_fn = project.set_function("data-prep.py", name="data-prep", kind="job", image="mlrun/mlrun", handler="breast_cancer_generator")
project.save()  # save the project with the latest config
<mlrun.projects.project.MlrunProject at 0x7ff72063d460>

Run your data processing function and log artifacts#

Functions are executed (using the CLI or SDK run command) with an optional handler, various params, inputs, and resource requirements. This generates a run object that can be tracked through the CLI, UI, and SDK. Multiple functions can be executed and tracked as part of a multi-stage pipeline (workflow).

Note

When a function has additional package requirements, or needs to include the content of a source archive, you must first build the function using the project.build_function() method.

The local flag indicates if the function is executed locally or “teleported” and executed in the Kubernetes cluster. The execution progress and results can be viewed in the UI (see hyperlinks below).


Run using the SDK

gen_data_run = project.run_function("data-prep", local=True)
> 2022-09-20 13:22:59,351 [info] starting run data-prep-breast_cancer_generator uid=1ea3533192364dbc8898ce328988d0a3 DB=http://mlrun-api:8080
project uid iter start state name labels inputs parameters results artifacts
quick-tutorial-iguazio 0 Sep 20 13:22:59 completed data-prep-breast_cancer_generator
v3io_user=iguazio
kind=
owner=iguazio
host=jupyter-5654cb444f-c9wk2
label_column=label
dataset

> to track results use the .show() or .logs() methods or click here to open in UI
> 2022-09-20 13:22:59,693 [info] run executed, status=completed

Print the run state and outputs

gen_data_run.state()
'completed'
gen_data_run.outputs
{'label_column': 'label',
 'dataset': 'store://artifacts/quick-tutorial-iguazio/data-prep-breast_cancer_generator_dataset:1ea3533192364dbc8898ce328988d0a3'}

Print the output dataset artifact (DataItem object) as dataframe

gen_data_run.artifact("dataset").as_df().head()
mean radius mean texture mean perimeter mean area mean smoothness mean compactness mean concavity mean concave points mean symmetry mean fractal dimension ... worst texture worst perimeter worst area worst smoothness worst compactness worst concavity worst concave points worst symmetry worst fractal dimension label
0 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.3001 0.14710 0.2419 0.07871 ... 17.33 184.60 2019.0 0.1622 0.6656 0.7119 0.2654 0.4601 0.11890 0
1 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.0869 0.07017 0.1812 0.05667 ... 23.41 158.80 1956.0 0.1238 0.1866 0.2416 0.1860 0.2750 0.08902 0
2 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.1974 0.12790 0.2069 0.05999 ... 25.53 152.50 1709.0 0.1444 0.4245 0.4504 0.2430 0.3613 0.08758 0
3 11.42 20.38 77.58 386.1 0.14250 0.28390 0.2414 0.10520 0.2597 0.09744 ... 26.50 98.87 567.7 0.2098 0.8663 0.6869 0.2575 0.6638 0.17300 0
4 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.1980 0.10430 0.1809 0.05883 ... 16.67 152.20 1575.0 0.1374 0.2050 0.4000 0.1625 0.2364 0.07678 0

5 rows × 31 columns

Train a model using an MLRun built-in Function Hub#

MLRun provides a Function Hub that hosts a set of pre-implemented and validated ML, DL, and data processing functions.

You can import the auto-trainer hub function that can: train an ML model using a variety of ML frameworks; generate various metrics and charts; and log the model along with its metadata into the MLRun model registry.

# Import the function
trainer = mlrun.import_function('hub://auto_trainer')

See the auto_trainer function usage instructions in the Function Hub or by typing trainer.doc()

Run the function on the cluster (if there is)

trainer_run = project.run_function(trainer,
    inputs={"dataset": gen_data_run.outputs["dataset"]},
    params = {
        "model_class": "sklearn.ensemble.RandomForestClassifier",
        "train_test_split_size": 0.2,
        "label_columns": "label",
        "model_name": 'cancer',
    }, 
    handler='train',
)
> 2022-09-20 13:23:14,811 [info] starting run auto-trainer-train uid=84057e1510174611a5d2de0671ee803e DB=http://mlrun-api:8080
> 2022-09-20 13:23:14,970 [info] Job is running in the background, pod: auto-trainer-train-dzjwz
Matplotlib created a temporary config/cache directory at /tmp/matplotlib-3pzdch1o because the default path (/.config/matplotlib) is not a writable directory; it is highly recommended to set the MPLCONFIGDIR environment variable to a writable directory, in particular to speed up the import of Matplotlib and to better support multiprocessing.
> 2022-09-20 13:23:20,953 [info] Sample set not given, using the whole training set as the sample set
> 2022-09-20 13:23:21,143 [info] training 'cancer'
> 2022-09-20 13:23:22,561 [info] run executed, status=completed
final state: completed
project uid iter start state name labels inputs parameters results artifacts
quick-tutorial-iguazio 0 Sep 20 13:23:20 completed auto-trainer-train
v3io_user=iguazio
kind=job
owner=iguazio
mlrun/client_version=1.1.0
host=auto-trainer-train-dzjwz
dataset
model_class=sklearn.ensemble.RandomForestClassifier
train_test_split_size=0.2
label_columns=label
model_name=cancer
accuracy=0.956140350877193
f1_score=0.967741935483871
precision_score=0.9615384615384616
recall_score=0.974025974025974
feature-importance
test_set
confusion-matrix
roc-curves
calibration-curve
model

> to track results use the .show() or .logs() methods or click here to open in UI
> 2022-09-20 13:23:24,216 [info] run executed, status=completed

View the job progress results and the selected run in the MLRun UI

train job in UI


Results (metrics) and artifacts are generated and tracked automatically by MLRun

trainer_run.outputs
{'accuracy': 0.956140350877193,
 'f1_score': 0.967741935483871,
 'precision_score': 0.9615384615384616,
 'recall_score': 0.974025974025974,
 'feature-importance': 'v3io:///projects/quick-tutorial-iguazio/artifacts/auto-trainer-train/0/feature-importance.html',
 'test_set': 'store://artifacts/quick-tutorial-iguazio/auto-trainer-train_test_set:84057e1510174611a5d2de0671ee803e',
 'confusion-matrix': 'v3io:///projects/quick-tutorial-iguazio/artifacts/auto-trainer-train/0/confusion-matrix.html',
 'roc-curves': 'v3io:///projects/quick-tutorial-iguazio/artifacts/auto-trainer-train/0/roc-curves.html',
 'calibration-curve': 'v3io:///projects/quick-tutorial-iguazio/artifacts/auto-trainer-train/0/calibration-curve.html',
 'model': 'store://artifacts/quick-tutorial-iguazio/cancer:84057e1510174611a5d2de0671ee803e'}
# Display HTML output artifacts
trainer_run.artifact('confusion-matrix').show()

Build, test, and deploy the model serving functions#

MLRun serving can produce managed, real-time, serverless, pipelines composed of various data processing and ML tasks. The pipelines use the Nuclio real-time serverless engine, which can be deployed anywhere. For more details and examples, see MLRun serving graphs.

Create a model serving function

serving_fn = mlrun.new_function("serving", image="python:3.8", kind="serving", requirements=["mlrun[complete]", "scikit-learn==1.1.2"])

Add a model

The basic serving topology supports a router with multiple child models attached to it. The function.add_model() method allows you to add models and specify the name, model_path (to a model file, dir, or artifact), and the serving class (built-in or user defined).

serving_fn.add_model('cancer-classifier',model_path=trainer_run.outputs["model"], class_name='mlrun.frameworks.sklearn.SklearnModelServer')
<mlrun.serving.states.TaskStep at 0x7ff6da1ac190>
# Plot the serving graph topology
serving_fn.spec.graph.plot(rankdir="LR")
../_images/4f435a5180c2bf96a1330e48c3e65857e409e81b599c97ea6332e0337e937fb0.svg

Simulating the model server locally

# Create a mock (simulator of the real-time function)
server = serving_fn.to_mock_server()
> 2022-09-20 13:24:24,867 [warning] run command, file or code were not specified
> 2022-09-20 13:24:25,240 [info] model cancer-classifier was loaded
> 2022-09-20 13:24:25,241 [info] Loaded ['cancer-classifier']

Test the mock model server endpoint

  • List the served models

server.test("/v2/models/", method="GET")
{'models': ['cancer-classifier']}
  • Infer using test data

my_data = {"inputs"
           :[[
               1.371e+01, 2.083e+01, 9.020e+01, 5.779e+02, 1.189e-01, 1.645e-01,
               9.366e-02, 5.985e-02, 2.196e-01, 7.451e-02, 5.835e-01, 1.377e+00,
               3.856e+00, 5.096e+01, 8.805e-03, 3.029e-02, 2.488e-02, 1.448e-02,
               1.486e-02, 5.412e-03, 1.706e+01, 2.814e+01, 1.106e+02, 8.970e+02,
               1.654e-01, 3.682e-01, 2.678e-01, 1.556e-01, 3.196e-01, 1.151e-01]
            ]
}
server.test("/v2/models/cancer-classifier/infer", body=my_data)
X does not have valid feature names, but RandomForestClassifier was fitted with feature names
{'id': '27d3f10a36ce465f841d3e19ca404889',
 'model_name': 'cancer-classifier',
 'outputs': [0]}
  • Read the model name, ver and schema (input and output features)

Deploy a real-time serving function (over Kubernetes or Docker)

This section requires Nuclio to be installed (over k8s or Docker).

Use the mlrun deploy_function() method to build and deploy a Nuclio serving function from your serving-function code. You can deploy the function object (serving_fn) or reference pre-registered project functions.

project.deploy_function(serving_fn)
> 2022-09-20 13:24:34,823 [info] Starting remote function deploy
2022-09-20 13:24:35  (info) Deploying function
2022-09-20 13:24:35  (info) Building
2022-09-20 13:24:35  (info) Staging files and preparing base images
2022-09-20 13:24:35  (info) Building processor image
2022-09-20 13:25:35  (info) Build complete
2022-09-20 13:26:05  (info) Function deploy complete
> 2022-09-20 13:26:06,030 [info] successfully deployed function: {'internal_invocation_urls': ['nuclio-quick-tutorial-iguazio-serving.default-tenant.svc.cluster.local:8080'], 'external_invocation_urls': ['quick-tutorial-iguazio-serving-quick-tutorial-iguazio.default-tenant.app.alexp-edge.lab.iguazeng.com/']}
DeployStatus(state=ready, outputs={'endpoint': 'http://quick-tutorial-iguazio-serving-quick-tutorial-iguazio.default-tenant.app.alexp-edge.lab.iguazeng.com/', 'name': 'quick-tutorial-iguazio-serving'})
  • Test the live endpoint

serving_fn.invoke("/v2/models/cancer-classifier/infer", body=my_data)
> 2022-09-20 13:26:06,094 [info] invoking function: {'method': 'POST', 'path': 'http://nuclio-quick-tutorial-iguazio-serving.default-tenant.svc.cluster.local:8080/v2/models/cancer-classifier/infer'}
{'id': '2533b72a-6d94-4c51-b960-02a2deaf84b6',
 'model_name': 'cancer-classifier',
 'outputs': [0]}

Done!#

Congratulation! You’ve completed Part 1 of the MLRun getting-started tutorial. Proceed to Part 2: Train, Track, Compare, and Register Models to learn how to train an ML model.