Source code for mlrun.model_monitoring.applications.context

# Copyright 2024 Iguazio
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import socket
from typing import Any, Optional, cast

import numpy as np
import pandas as pd

import mlrun.common.constants as mlrun_constants
import mlrun.common.schemas.model_monitoring.constants as mm_constants
import mlrun.feature_store as fstore
import mlrun.features
import mlrun.serving
import mlrun.utils
from mlrun.artifacts import Artifact, DatasetArtifact, ModelArtifact, get_model
from mlrun.common.model_monitoring.helpers import FeatureStats, pad_features_hist
from mlrun.model_monitoring.helpers import (
    calculate_inputs_statistics,
    get_endpoint_record,
)
from mlrun.model_monitoring.model_endpoint import ModelEndpoint


[docs]class MonitoringApplicationContext: """ The monitoring context holds all the relevant information for the monitoring application, and also it can be used for logging artifacts and results. The monitoring context has the following attributes: :param application_name: (str) The model monitoring application name. :param project_name: (str) The project name. :param project: (MlrunProject) The project object. :param logger: (mlrun.utils.Logger) MLRun logger. :param nuclio_logger: (nuclio.request.Logger) Nuclio logger. :param sample_df_stats: (FeatureStats) The new sample distribution dictionary. :param feature_stats: (FeatureStats) The train sample distribution dictionary. :param sample_df: (pd.DataFrame) The new sample DataFrame. :param start_infer_time: (pd.Timestamp) Start time of the monitoring schedule. :param end_infer_time: (pd.Timestamp) End time of the monitoring schedule. :param latest_request: (pd.Timestamp) Timestamp of the latest request on this endpoint_id. :param endpoint_id: (str) ID of the monitored model endpoint :param output_stream_uri: (str) URI of the output stream for results :param model_endpoint: (ModelEndpoint) The model endpoint object. :param feature_names: (list[str]) List of models feature names. :param label_names: (list[str]) List of models label names. :param model: (tuple[str, ModelArtifact, dict]) The model file, model spec object, and a list of extra data items. """ def __init__( self, *, graph_context: mlrun.serving.GraphContext, application_name: str, event: dict[str, Any], model_endpoint_dict: dict[str, ModelEndpoint], ) -> None: """ Initialize a `MonitoringApplicationContext` object. Note: this object should not be instantiated manually. :param application_name: The application name. :param event: The instance data dictionary. :param model_endpoint_dict: Dictionary of model endpoints. """ self.application_name = application_name self.project_name = graph_context.project self.project = mlrun.load_project(url=self.project_name) # MLRun Logger self.logger = mlrun.utils.create_logger( level=mlrun.mlconf.log_level, formatter_kind=mlrun.mlconf.log_formatter, name="monitoring-application", ) # Nuclio logger - `nuclio.request.Logger`. # Note: this logger does not accept keyword arguments. self.nuclio_logger = graph_context.logger # event data self.start_infer_time = pd.Timestamp( cast(str, event.get(mm_constants.ApplicationEvent.START_INFER_TIME)) ) self.end_infer_time = pd.Timestamp( cast(str, event.get(mm_constants.ApplicationEvent.END_INFER_TIME)) ) self.endpoint_id = cast( str, event.get(mm_constants.ApplicationEvent.ENDPOINT_ID) ) self.output_stream_uri = cast( str, event.get(mm_constants.ApplicationEvent.OUTPUT_STREAM_URI) ) self._feature_stats: Optional[FeatureStats] = None self._sample_df_stats: Optional[FeatureStats] = None # Default labels for the artifacts self._default_labels = self._get_default_labels() # Persistent data - fetched when needed self._sample_df: Optional[pd.DataFrame] = None self._model_endpoint: Optional[ModelEndpoint] = model_endpoint_dict.get( self.endpoint_id ) def _get_default_labels(self) -> dict[str, str]: return { mlrun_constants.MLRunInternalLabels.runner_pod: socket.gethostname(), mlrun_constants.MLRunInternalLabels.producer_type: "model-monitoring-app", mlrun_constants.MLRunInternalLabels.app_name: self.application_name, mlrun_constants.MLRunInternalLabels.endpoint_id: self.endpoint_id, } def _add_default_labels(self, labels: Optional[dict[str, str]]) -> dict[str, str]: """Add the default labels to logged artifacts labels""" return (labels or {}) | self._default_labels @property def sample_df(self) -> pd.DataFrame: if self._sample_df is None: feature_set = fstore.get_feature_set( self.model_endpoint.status.monitoring_feature_set_uri ) features = [f"{feature_set.metadata.name}.*"] vector = fstore.FeatureVector( name=f"{self.endpoint_id}_vector", features=features, with_indexes=True, ) vector.metadata.tag = self.application_name vector.feature_set_objects = {feature_set.metadata.name: feature_set} offline_response = vector.get_offline_features( start_time=self.start_infer_time, end_time=self.end_infer_time, timestamp_for_filtering=mm_constants.FeatureSetFeatures.time_stamp(), ) self._sample_df = offline_response.to_dataframe().reset_index(drop=True) return self._sample_df @property def model_endpoint(self) -> ModelEndpoint: if not self._model_endpoint: self._model_endpoint = ModelEndpoint.from_flat_dict( get_endpoint_record(self.project_name, self.endpoint_id) ) return self._model_endpoint @property def feature_stats(self) -> FeatureStats: if not self._feature_stats: self._feature_stats = json.loads(self.model_endpoint.status.feature_stats) pad_features_hist(self._feature_stats) return self._feature_stats @property def sample_df_stats(self) -> FeatureStats: """statistics of the sample dataframe""" if not self._sample_df_stats: self._sample_df_stats = calculate_inputs_statistics( self.feature_stats, self.sample_df ) return self._sample_df_stats @property def feature_names(self) -> list[str]: """The feature names of the model""" feature_names = self.model_endpoint.spec.feature_names return ( feature_names if isinstance(feature_names, list) else json.loads(feature_names) ) @property def label_names(self) -> list[str]: """The label names of the model""" label_names = self.model_endpoint.spec.label_names return label_names if isinstance(label_names, list) else json.loads(label_names) @property def model(self) -> tuple[str, ModelArtifact, dict]: """The model file, model spec object, and a list of extra data items""" return get_model(self.model_endpoint.spec.model_uri)
[docs] @staticmethod def dict_to_histogram(histogram_dict: FeatureStats) -> pd.DataFrame: """ Convert histogram dictionary to pandas DataFrame with feature histograms as columns :param histogram_dict: Histogram dictionary :returns: Histogram dataframe """ # Create a dictionary with feature histograms as values histograms = {} for feature, stats in histogram_dict.items(): if "hist" in stats: # Normalize to probability distribution of each feature histograms[feature] = np.array(stats["hist"][0]) / stats["count"] # Convert the dictionary to pandas DataFrame histograms = pd.DataFrame(histograms) return histograms
[docs] def log_artifact( self, item, body=None, tag: str = "", local_path: str = "", artifact_path: Optional[str] = None, format: Optional[str] = None, upload: Optional[bool] = None, labels: Optional[dict[str, str]] = None, target_path: Optional[str] = None, **kwargs, ) -> Artifact: """ Log an artifact. See :func:`~mlrun.projects.MlrunProject.log_artifact` for the documentation. """ labels = self._add_default_labels(labels) return self.project.log_artifact( item, body=body, tag=tag, local_path=local_path, artifact_path=artifact_path, format=format, upload=upload, labels=labels, target_path=target_path, **kwargs, )
[docs] def log_dataset( self, key, df, tag="", local_path=None, artifact_path=None, upload=None, labels=None, format="", preview=None, stats=None, target_path="", extra_data=None, label_column: Optional[str] = None, **kwargs, ) -> DatasetArtifact: """ Log a dataset artifact. See :func:`~mlrun.projects.MlrunProject.log_dataset` for the documentation. """ labels = self._add_default_labels(labels) return self.project.log_dataset( key, df, tag=tag, local_path=local_path, artifact_path=artifact_path, upload=upload, labels=labels, format=format, preview=preview, stats=stats, target_path=target_path, extra_data=extra_data, label_column=label_column, **kwargs, )
[docs] def log_model( self, key, body=None, framework="", tag="", model_dir=None, model_file=None, algorithm=None, metrics=None, parameters=None, artifact_path=None, upload=None, labels=None, inputs: Optional[list[mlrun.features.Feature]] = None, outputs: Optional[list[mlrun.features.Feature]] = None, feature_vector: Optional[str] = None, feature_weights: Optional[list] = None, training_set=None, label_column=None, extra_data=None, **kwargs, ) -> ModelArtifact: """ Log a model artifact. See :func:`~mlrun.projects.MlrunProject.log_model` for the documentation. """ labels = self._add_default_labels(labels) return self.project.log_model( key, body=body, framework=framework, tag=tag, model_dir=model_dir, model_file=model_file, algorithm=algorithm, metrics=metrics, parameters=parameters, artifact_path=artifact_path, upload=upload, labels=labels, inputs=inputs, outputs=outputs, feature_vector=feature_vector, feature_weights=feature_weights, training_set=training_set, label_column=label_column, extra_data=extra_data, **kwargs, )